arXiv:2412.16075v1 [cs.Al] 20 Dec 2024

Formal Mathematical Reasoning:
A New Frontier in Al

Kaiyu Yang', Gabriel Poesia®, Jingxuan He?,
Wenda Li*, Kristin Lauter!, Swarat Chaudhuri®, Dawn Song?
!Meta FAIR, 2Stanford University, UC Berkeley, *University of Edinburgh, UT Austin

Abstract

Al for Mathematics (Al4Math) is not only intriguing intellectually but also crucial
for Al-driven discovery in science, engineering, and beyond. Extensive efforts on
Al4Math have mirrored techniques in NLP, in particular, training large language
models on carefully curated math datasets in text form. As a complementary yet
less explored avenue, formal mathematical reasoning is grounded in formal systems
such as proof assistants, which can verify the correctness of reasoning and provide
automatic feedback. In this position paper, we advocate for formal mathematical
reasoning and argue that it is indispensable for advancing Al4Math to the next
level. In recent years, we have seen steady progress in using Al to perform formal
reasoning, including core tasks such as theorem proving and autoformalization, as
well as emerging applications such as verifiable generation of code and hardware
designs. However, significant challenges remain to be solved for Al to truly master
mathematics and achieve broader impact. We summarize existing progress, discuss
open challenges, and envision critical milestones to measure future success. At
this inflection point for formal mathematical reasoning, we call on the research
community to come together to drive transformative advancements in this field.

1 Introduction

Since the early days of Al, researchers have dreamed of building Al systems that can automate
mathematical reasoning. The first Al program in history was Newell and Simon’s Logic Theorist [[1],
a theorem proving system that could prove 38 theorems in Principia Mathematica [2]. In the decades
since then, the center of Al has shifted from symbolic methods to machine learning, and a new field
of statistical Al for mathematics (Al4Math) has emerged. One appeal of the field is that mathematical
problems are a proxy for a broad array of reasoning and planning tasks. Another attraction is that math
plays a foundational role in quantitative disciplines, so Al4Math has the potential to revolutionize
Al for science, engineering, and beyond. For these reasons, designers of large language models
(LLMs) [3 4] have frequently highlighted LLMs’ success in math problems, and there have also
been efforts to build Al systems that outperform humans at math competitions [SH7].

Given the importance of Al4Math, substantial research has been dedicated to developing math LLMs,
using techniques borrowed from natural language processing (NLP). A common approach is to
continue pretraining LLMs on math data, such as arXiv papers and web pages from MathOverflow,
and then finetune the model on curated datasets of math problems with detailed, step-by-step solutions.
We call this the “informal” approach to distinguish it from the formal approach that will be introduced
later (Sec.[2). Just like LLMs in general, math LLMs have a simple recipe, but the secret sauce is
often data curation [8H11]. Carefully curated training data plus inference-time techniques, including
chain-of-thought prompting [[12]], self-consistency [[13[], and tool use [14], have led to remarkable
success on widely used benchmarks such as GSM8K [15]] and MATH [[16]], as well as in the AIMO
Progress Prize [6]]. However, at the time of writing, the success of the informal approach has been

Preprint. Under review.

mostly limited to high school math not exceeding the AIME levelﬂ This raises a key question:
How far can we go by scaling up the informal approach? Will it enable math LLMs to solve
more challenging competition problems (e.g., IMO, International Mathematical Olympiad) or even
problems in mathematical research?

Moving from high school to more advanced mathematics, the informal approach faces challenges that
are hard to resolve by merely scaling up the training. First, training math LLMs requires high-quality
data, which is scarce in advanced mathematics. For novel research math problems, it is infeasible
to find solutions to similar problems on the Internet or manually annotate the data on a large scale.
Without scaling up the data, we cannot fully benefit from the scaling laws for LLMs [18,|19]. Second,
solutions to many advanced problems are not numbers that can be evaluated by comparing them with
the ground truth. Instead, they carry out a chain of intricate reasoning steps, e.g., a proof. LLMs are
notorious for hallucinating seemingly valid reasoning steps, making it challenging to evaluate the
correctness of model output or collect useful feedback for learning. These challenges are difficult to
address by scaling up the informal approach during training. If training-time scaling is not enough,
what else do we need? One emerging direction, exemplified by OpenAl ol [[17], is to scale up the
informal approach during inference, potentially combining search with neural verifiers to mitigate
hallucinated reasoning [15]]. While this approach has gained traction, its effectiveness on advanced
mathematical problems is an open question. In this position paper, we focus on a complementary
approach that is less explored: formal mathematical reasoning.

We consider formal mathematical reasoning broadly as mathematical reasoning grounded in formal
systems, including but not limited to first/higher-order logic [20], dependent type theory [21]], and
computer programs annotated with formal specifications [22]. Such formal systems provide envi-
ronments that can verify the model’s reasoning and provide automatic feedback. They stand apart
from the “tools” used by modern LLMs [23]] in their ability to model the provable truth or falsity of
a broad class of propositions. The feedback provided by such systems can mitigate data scarcity;
also, such systems enable rigorous test-time checks that resist hallucination. In contrast, informal
mathematics refers to math text commonly found in textbooks, research papers, and online math
forums. Informal math interleaves natural language with symbols (e.g., ISTiEX), but these symbols do
not have a self-contained formal semantics, instead relying on informal text to convey significant
parts of their meaning.

AlphaProof [[7] and AlphaGeometry [S] are two prominent examples of the success of this idea. Before
these systems, there were many failed attempts to use LLMs to solve olympiad-level math problems.
The key differentiator in the aforementioned systems is the principled use of symbolic representations
and proof-checking frameworks. The symbolic components (Lean [24} 25] for AlphaProof; a domain-
specific geometry system for AlphaGeometry) are used to execute a neural network’s reasoning steps
and generate high-quality synthetic data, leading to unprecedented mathematical reasoning abilities.

AlphaProof and AlphaGeometry follow in the footsteps of a broader literature on the synergistic
use of formal methods and machine learning in mathematical tasks [26H33]]. This literature in-
cludes research on neural theorem proving, i.e., generating formal proofs given formal theorem
statements [34436], and autoformalization, i.e., automatically translating informal mathematics into
formal mathematics [37]. The advent of LLMs has significantly accelerated research in this area.
For example, autoformalization was long hampered by the lack of aligned informal-formal pairs
for finetuning. LLMs can mitigate this problem by either synthesizing the data [38]] or performing
autoformalization without finetuning [37]]. As a result, we are starting to realize autoformalization’s
potential in bootstrapping the capability of neural theorem provers [39]. LLMs are also powerful
tools for theorem proving; in particular, recent approaches have exploited LL.Ms to predict proof
steps and fix buggy proofs without explicit training on formal proof data [36 40].

The research infrastructure around LLMs and formal reasoning is rapidly maturing. Lean [24, 25]—
a language for writing formal proofs—has gained popularity among mathematicians, leading to
formalized research mathematics [41] and general-purpose mathematical libraries [42]]. There are now
multiple frameworks [35}136] that support the interaction between LLMs and Lean. These frameworks
allow the extraction of training data from human-written formal proofs, as well as theorem proving
via interaction with the formal environment. Multilingual infrastructures for proof languages like
Coq [21] and Isabelle [20] in addition to Lean are also beginning to be built [36]. Finally, LLMs have

'Some of the most difficult problems in MATH and the AIMO Progress Prize are at the level of AIME
(American Invitational Mathematics Examination). OpenAl ol [17] was also evaluated on AIME problems.

been used to assist human mathematicians in writing formal proofs [43]], potentially initiating a data
flywheel where growing human-written formal math data leads to more capable LLMs, which in turn
eases the creation of more data.

The emerging opportunities of Al for formal mathematical reasoning have led to booming research
activities. As a recent survey [44] shows, the number of publications in this field almost doubled
in 2023 and is likely to double again in 2024. By combining autoformlization with reinforcement
learning, AlphaProof [7] is the first Al to achieve the level of silver medal in IMO. Developments in
this field also have immediate applications in formal verification [45H48]], a core computer science
problem that has traditionally been among the foremost applications of formal mathematics. While
formal verification can lead to software and hardware systems that are exceedingly robust and secure,
it has historically been too costly to deploy in all but the most safety-critical applications. Al can
drastically reduce this cost by substantially automating the formalization and proof effort needed to
formally certify complex systems. This can lead to a future in which mass-produced software and
hardware systems are far more robust than they are today.

For all these reasons, we believe Al-based formal mathematical reasoning has reached an
inflection point, with significant progress to come in the next few years. However, substantial
work remains to be done. This position paper maps out open challenges in data and algorithms,
as well as potential routes for future progress. It is not meant to be a comprehensive survey but to
provide perspectives on where the field may go next and call on the community to unite to accelerate
the progress. While we celebrate the promise of formal mathematical reasoning, it should be seen
as complementary to the informal approach. For example, future models could combine natural
language reasoning with autoformalization to solve informal problems rigorously (Sec.[3.3]and[5.2).

The remainder of this paper is organized as follows: Sec.|2discusses the informal approach in detail
and introduces formal mathematical reasoning. Sec. [3|reviews recent progress in using Al to reason
formally. Sec.d]explores open challenges and future directions, and Sec. [proposes milestones for
measuring AI’s capabilities in formal mathematical reasoning.

2 Al for Mathematics (AI4Math) and the Formal Turn

Mathematical reasoning is a challenge at the frontier of Al research. In this section, we begin
by examining the informal approach to Al4Math and its limitations. Then, we introduce formal
mathematical reasoning as a promising path for advancing Al4Math.

2.1 State-of-the-art Math LLMs and Their Limitations

A Case Study of NuminaMath. NuminaMath [49] is a math LLM that won the first AIMO
Progress Prize in July 2024, successfully solving 29 out of 50 test problems. The test problems were
intermediate-level high school math problems newly created and kept private before the evaluation.
Therefore, they have very little risk of data contamination compared to public benchmarks such as
GSMSK [15] and MATH [16]. NuminaMath is an excellent example of state-of-the-art math LLMs,
as it encompasses many key ingredients such as math pretraining [10}50552]], finetuning [8} 9], and
tool-integrated reasoning [14}53]] (Fig.[T). Next, we use NuminaMath as an example to elaborate on
each ingredient, highlighting the critical role of data

1. Math pretraining (Fig.[I] Left): Starting from a generic LLM (or a coding LLM such as
Code Llama [154]]), one can continue to pretrain the model on a large corpus of math-related
documents from the web. The result is referred to as the base math LLM. NuminaMath and
other top contestants in the AIMO Progress Prize unanimously adopted DeepSeekMath-Base
7B [L1]] as the base math LLM. Critical to DeepSeekMath’s success is data. To retrieve high-
quality math documents from Common Crawl, the authors of DeepSeekMath engineered a
data selection pipeline that combined automatic filtering and manual annotation.

2. Finetuning on step-by-step solutions (Fig.[T|Middle): The base math LLM has been exposed
to a vast amount of mathematical content during pretraining, but it is not yet capable of
generating well-structured solutions to math problems. To align the model with problem

2OpenAl ol [17] demonstrated impressive math capabilities on AIME. It has likely incorporated additional
techniques beyond those in Sec. [2;1} but public information on its inner workings remains limited.

Math-related
web documents

Problem: Suppose that the sum of the squares of two
Problems w/ step- complex numbers x and y is 7, and the sum of their cubes is
10. List all possible values for x + y, separated by commas.

by-step solutions
Problems w/ tool-

integrated solutions Solution: Let’s use “sympy" to calculate and print all
possible values for x + y.

def possible_values():
X, y = symbols(“x y”)
eql = Eq(xkk2 + ykk2, 7)
eq2 = Eq(xkk3 + y#k3, 10)
solutions = solve((eql, eq2), (x, y))
return [simplify(sol[@] + sol[1]) for sol in solutions]

print(possible_values())

Removing duplicates, the possible values for x + y are
LLM pretrained Base math LLM Finetuned Tool-integrated | \boxed{-5,1, 4}
on text and code math LLM math LLM

Figure 1: State-of-the-art math LLMs such as NuminaMath [49] typically undergo three stages: math
pretraining, finetuning on step-by-step solutions, and further finetuning on tool-integrated solutions
that interleave natural language reasoning with Python tool invocation.

solving, one can finetune it on a carefully curated dataset consisting of math problems with
detailed, step-by-step solutions, e.g., in the form of chain-of-thought [12]]. This dataset can
be constructed by preprocessing and combining heterogeneous sources of problems, e.g.,
online forums, high school exams, math competitions, problem sets, and manual annotations.
The problems and solutions are then augmented and reformatted by LLMs like GPT-4 [3]].
NuminaMath, for example, has constructed a large dataset of 860K problems and solutions
covering high school and competition math [55].

3. Tool-integrated reasoning (Fig. [I| Right): Finetuned math LLMs have acquired general
problem-solving skills, but they may still struggle with precise calculation (e.g., 162 x 731)
and symbol manipulation (e.g., expanding (x + 2)® into powers of x). A simple solution is
to outsource these operations to external tools such as SymPy [56]. NuminaMath performs
tool-integrated reasoning that interleaves reasoning in natural language with tool invocation
in Python. The key is, again, data. The model is finetuned on tool-integrated solutions
consisting of natural language combined with tool invocation trajectories. NuminaMath
follows the approaches in ToRA [[14] and MuMath-Code [53] to collect this dataset of math
problems with tool-integrated solutions.

Data Scarcity. The NuminaMath team summarized: “Good data is all you need” [49]. Indeed,
training data plays a pivotal role throughout all ingredients of the informal approach. As a result,
the success of this approach has been limited to domains where abundant high-quality data can be
obtained at low costs. For pre-college math, it is relatively easy to collect problems and solutions on
the Internet or annotate them manually. However, it is difficult to extend the informal approach to
data-scarce domains such as advanced mathematics.

Advanced mathematics forms the foundation of numerous scientific disciplines. For example, climate
modeling depends on partial differential equations. To unlock AI’s full potential in scientific discovery,
it must be able to learn and apply advanced mathematics. Moreover, the long-term goal of developing
human-level Al mathematicians requires Al to handle novel aspects of mathematics. Novelty, by
definition, implies difficulty in collecting in-distribution training data. Therefore, moving forward,
we see data scarcity as a major roadblock to the informal approach to AI4Math.

Lack of Correctness Verifiability. Besides data scarcity, another challenge is in evaluation, which
is essential for Al to make measurable progress. Existing math LLMs are evaluated on benchmarks
such as GSM8K and MATH, which consist of math problems whose solution is a single number (or
expression). Therefore, evaluation can be done easily, by comparing the model-generated number
against the ground truth. While this approach is suitable for pre-college mathematics, it is not directly
applicable to more advanced mathematics. Recent work has attempted to adapt this evaluation
framework for advanced problems by restricting to problems that have numeric solutions [57].

However, this deviates from common practice in mathematical research. After all, almost all AIME
problems have numeric solutions, but none of the Millennium Prize Problems do.

Rather than restricting to numeric solutions, advanced mathematics frequently deals with abstract
conjectures and proofs. Verifying proofs can be a daunting task, even for experienced mathematicians.
This is evident in the lengthy review process for mathematical manuscripts and the controversies
surrounding certain proofs, such as the proof of the abc conjecture [S8]]. The situation becomes even
more complicated when LLMs are used to generate proofs, as they are known to hallucinate plausibly.

To address the verification difficulty, researchers have explored self-verification or self-correction.
These approaches use LLMs to detect and correct reasoning errors in proofs, based on the assumption
that verifying proofs may be easier than generating them. While self-verification has been studied
extensively, the results have been mixed [S9H61]. A growing body of work suggests that current
LLMs struggle with intrinsic self-verification, i.e., verifying their own generations without relying on
external feedback [[62H66]. Therefore, it is still an open question whether rigorous proof verification
can be achieved within the informal approach.

2.2 Al for Formal Mathematical Reasoning

From Informal to Formal. Due to the challenges in data and evaluation, it is difficult to directly
extend the informal approach to advanced mathematics. Formal mathematical reasoning helps address
these challenges. In this paper, it refers to mathematical reasoning grounded in formal systems,
which have a syntax for well-formed formulas and can perform reasoning by manipulating formulas
following a set of well-defined inference rules. Examples of formal systems include axiomatic set
theory [67.168], higher-order logic [69-71]], and dependent type theory [72H74]. They are widely used
in mathematics and computer programming. In math, they can express axioms, theorems, and proofs.
In programming, they are used to specify programs and reason about semantics. The connection
between mathematical proofs and computer programs is deepened by theoretical results such as the
Curry—Howard correspondence [75].

Mathematics expressed in formal systems is called formal mathematics. It is expressive: Almost all
mathematics can be expressed by first-order logic with ZFC set theory [76]. At the same time, it
enforces formal constraints: Formulas must conform to grammar rules, and their manipulation must
conform to inference rules that capture valid reasoning. This is similar to how board games like chess
and Go are played within predetermined rules and moves. The success of Al on board games [[77. 78]
suggests that a similar approach could be applied to formal mathematics, even though mathematics,
with an infinite number of configurations and moves, can be much more challenging than Go.

Specifically, formal systems can be useful environments for Al to learn mathematics. A formal
environment can guarantee the soundness of reasoning, provide automatic feedback, and check if
the goal has been achieved. This is crucial to addressing the two challenges faced by the informal
approach: data scarcity and evaluation. Automatic feedback can serve as learning signals and alleviate
the need for human-annotated training data. Rigorous proof verification allows us to evaluate the
model’s reasoning without worrying about hallucination.

Proof Assistants and Lean. A concrete type of formal systems is called proof assistants, also known
as interactive theorem provers. These are software tools that enable humans to write formal proofs
about mathematics or verified software. Common examples of proof assistants include Coq [21]],
Isabelle [20]], and Lean [24} 25]. They have different logical foundations but share similarities from a
user’s perspective, regardless of whether the “user” is human or Al For simplicity, we will frequently
use Lean as an example to explain key concepts in formal mathematical reasoning, though many
ideas can be applied to other proof assistants or formal systems in general.

Fig. E] demonstrates how Lean is used to formalize mathematics. At its core, Lean is a functional
programming language with dependent types [[79], making it suitable for writing not only conventional
programs but also mathematical definitions, theorems, and proofs. Fig.[2|(Middle) is an example
Lean file. First, it defines natural numbers (Nat) as either zero or the successor of another natural
number. Then, it defines addition between two natural numbers (add) as a recursive function. Finally,
it states and proves the theorem add_zero (Vn € N,0 + n = n). Lean can automatically check if
the proof is correct with respect to the theorem statement. Technically, due to the Curry-Howard

Proof tree Lean file Project O GitHub

leanprover-community/
4 X thliba
inductive Nat where A mathl

| zero : Nat <>

| succ : Nat - Nat

def add (m n : Nat) : Nat := teorth/pfr 1

match n with AN

Local context
+ Goal

Tactic

induction n

Fadd00=0 n:N | .zero =>m <>
ih:addOn’=n’ | .succ n' => ,succ (add m n')
rfl Fadd 0 (n'+1)=n"+1
l theorem add_zero (n : Nat) : add .zero n = n := by ImperialCollegeLon
J simp [add, ih] induction n with N | don/FLT I
| zero => rfl <>

K / | succ n ih => simp [add, ih] /

Figure 2: Formalizing mathematics using the Lean proof assistant [24} 25].

correspondence, statements in Lean are types, and proofs are expressions. As a result, proof checking
is essentially type checking, i.e., verifying if an expression has the specified type.

Let’s take a closer look at the proof of add_zero (Fig. [J] Leff). In Lean, theorem proving is a
backward and interactive process. It begins with the theorem statement as the initial goal, and the user
enters a proof step, known as a "tactic". When executed by Lean, the tactic transforms the current
goal into a list of sub-goals that are hopefully simpler. The user then inspects the new goals and
enters new tactics, repeating this process until there are no goals left. This process implicitly defines
a proof tree whose nodes are goals and edges are tactics (Fig. [2] Left). The user plays a key role
in theorem proving. While proof assistants like Lean were designed with human users in mind, in
formal mathematical reasoning, the user can also be Al or humans in collaboration with AI (Sec. @])

Formalizing mathematics using Lean is similar to software development, as shown in Fig. 2] (Right).
Lean files are organized into larger code units such as libraries and projects, which can be open-
sourced on GitHub and reused by other projects. For example, the formalization of cutting-edge
mathematical research like pfr|(the Polynomial Freiman-Ruzsa conjecture [80]) often builds upon the
basic concepts formalized in mathlib|[42]], Lean’s general-purpose mathematical library. Mathlib
currently contains 82,847 definitions and 161,483 theorems, covering a wide range of topics including
analysis, algebra, and geometry. It is one of the largest monolithic repositories of formal mathematics
and includes a substantial portion of postgraduate-level mathematics.

AI Meets Formal Mathematics. Integrating Al with proof assistants such as Lean can benefit
both Al researchers and the proof assistant community (mathematicians, computer scientists, and
formal verification engineers). On the one hand, proof assistants provide data and environments
for developing Al for formal mathematical reasoning. On the other hand, Al can enhance the user
experience of proof assistants by automating simple proofs and suggesting useful lemmas.

Theorem proving

,MAT.«Z Autoformalization

2 >

Formal theorem

Formal proof
statement ormat proo

=4

\
1
1
1
—_>
1
1
1
Informal math / Formal math library

Figure 3: Common tasks using Al for formal mathematical reasoning in proof assistants.

Fig.B]includes common tasks at the intersection of AI and formal mathematics in proof assistants.
Given informal mathematics written by humans (e.g., textbooks and papers), autoformalization
automatically translates it into formal theorems and proofs. Given theorem statements, theorem
proving aims to generate formal proofs. In addition to the statement, a theorem prover may have
access to a large library of existing definitions and lemmas, such as mathlib, and can select useful
definitions and lemmas from the library. Furthermore, Al for autoformalization and theorem proving
can lead to new theorems and/or proofs that can enrich the library and bootstrap its own capability.

https://github.com/teorth/pfr
https://github.com/leanprover-community/mathlib4

Proof search
n:N

Fadd00=0 & ihraddon’=n’
Fadd 0 (n’+1)=n"+1

n:N
ih:addOon’=n’
add 0 (n'+1) = n'+1

n’:N
ihraddon’=n’

Language model Tactic

+add00=0 Fadd 0 (n'+1) =n’+1 ‘s.mp[add |h]
casesn % : T
weN Local context + goal I:> i rwlih] E
Fadd 0 (W +1) = n'+1 ! linarith '
";\I N e .
suggestions
- false Formal math library /

Figure 4: A neural theorem prover that combines tactic generation and proof search. This architecture
is adopted by the majority of existing methods, with only a handful of exceptions [39,40].

Fig. @]illustrates an architecture commonly adopted by recent neural theorem provers, consisting of
two parts: tactic generation and proof search. Given the current proof goal (and optionally a library
of definitions and lemmas), a neural network generates suggestions for the next tactic. The network
is often trained on human-written proofs and can be further finetuned using reinforcement learning.
The generated tactics are assembled into a complete proof by the proof search algorithm. It starts
from the theorem statement as the root and grows a search tree iteratively by executing tactics to
expand nodes, until a proof is found. The order of expansion is decided by the search algorithm, e.g.,
classical algorithms such as best-first search (BFS) and Monte Carlo tree search (MCTS).

’ N

PR] ~. 4 \
'/]MMZ \ : Formal theorem (and proof) :
1 Informal math Iy 4 : | 1
1 |14 L 1 1 theorem exists_infinite_primes (n : N) : 3 p, n = p A Prime p := 1
1 1 1 let p := minFac (n ! + 1) 1
: Theorem 1. There exists an infinite number of primes. | : have f1 : n ! + 1 # 1 := ne_of_gt ;\ succ_lt_succ <| factorial_pos _ :

have pp : Prime p := minFac_prime f1
1

1| Proof. Let n be an arbitrary positive integer, and let 1 1 have np : n s p := 1
I p € Z" be a prime factor of n!+1. We can derive p > n 1 1 le_of_not_ge fun h => 1
1 by noting that n! + 1 cannot be divided by positive | 1 have h: : p | n ! := dvd_factorial (minFac_pos _) h 1
| integers }fmmhz to n. S‘;‘Cc_n l.s.aJ_'b;;.r.ary, we ha‘s I 1 have h2 : p | 1 := (Nat.dvd_add_iff_right h1).2 (minFac_dvd _) I
\ proved that the number of primes is infinite. ; 1 pp.not_dvd_one hz 1
N e e m e - . \ o (p, e, pp) !
\ /

Figure 5: Autoformalization translates informal math to formal theorems and/or proofs automatically.

Fig. E] illustrates the task of autoformalization, i.e., translating from informal to formal. It takes
informal mathematics (e.g., textbooks and papers) and translate it into theorem statements in a formal
system such as Lean. In some settings, autoformalization also translates the proof [81. 82], which
can be viewed as a form of theorem proving given informal proofs as hints.

The formal and informal approaches to reasoning should not be viewed as mutually exclusive, nor do
we argue that formal reasoning should entirely supplant informal reasoning. Instead, these approaches
can potentially complement each other to enable complex reasoning that is both general and rigorous.
For example, autoformalization can be integrated with theorem proving to solve problems formulated
in natural language [83]]. The model can generate reasoning steps in natural language while attempting
to autoformalize part of the reasoning, which obtains feedback from the formal environment and
helps filter out invalid reasoning. We refer to this integration of formal and informal reasoning as
verified reasoning in natural language, which is discussed in detail in Sec.[3.3and[5.2]

2.3 Other Directions in Al for Mathematics

While we have highlighted the distinction between informal and formal approaches, Al4Math is a
broad and open-ended research field that does not fit neatly into this dichotomy. For example, in addi-
tion to generating solutions or proofs, neural networks can also be used to approximate mathematical
functions. This includes simple functions such as greatest common divisor [84]], eigenvalues [85]],
and modular arithmetic [86]]. These functions can be computed by well-known algorithms; however,
approximating them through neural networks offers valuable insights into the model’s capabilities and
mechanistic interpretability. Furthermore, neural networks can approximate more complex functions
for which we do not have efficient algorithms, with applications in cryptography [87]], theoretical
physics [88]], control theory [89]], and partial differential equations [90Q].

Collaborative efforts between Al researchers and mathematicians have led to notable progress on
open problems in mathematics. For example, FunSearch [91]] uncovered new solutions to the cap
set problem, a long-standing open problem in additive combinatorics [92]. It represents solutions as
programs and leverages LLMs to generate new programs from existing ones, using an automated
evaluator to assess the quality of solutions. Gukov et al. [93] use reinforcement learning (RL)
to generate transformations for knot simplification in topology, while Wagner [94] uses RL to
find counterexamples to open conjectures in graph theory. PatternBoost [95] finds mathematical
constructions by combining Transformers with classical local search algorithms, demonstrating
effectiveness on open problems in graph theory and combinatorics [96]. These works share similarities
with formal mathematical reasoning: They also represent mathematical objects as symbols and
manipulate them according to well-defined inference rules. However, they are tailored to specific
subdomains rather than relying on general-purpose mathematical languages like Lean. Incorporating
domain-specific mathematical insights can be valuable, as further discussed in Sec. .2

3 Recent Progress in Al for Formal Mathematical Reasoning

Al has made substantial progress in formal mathematical reasoning. First, we discuss the progress in
two key tasks: autoformalization and theorem proving. Then, we sample two adjacent areas—natural
language and code generation—that benefit from verifiable reasoning enabled by the formal approach.

3.1 Autoformalization

Pinpointing the origin of the phrase “autoformalization” is challenging, but the pioneers of automated
theorem proving in the 1950s and 60s clearly conceived the idea:

The original aim of the writer was to take mathematical textbooks such as Landau
on the number system, Hardy-Wright on number theory, Hardy on the calculus,
Veblen-Young on projective geometry, the volumes by Bourbaki, as outlines and
make the machine formalize all the proofs (fill in the gaps). Hao Wang [97]

Nevertheless, it was not until the rise of interactive theorem proving (e.g., Automath [98])) that people
began to seriously consider automating the labor-intensive formalization process [99].

Rule-Based Autoformalization. Mohan Ganesalingam [100] explored a linguistic foundation
for mathematical texts, introducing a theory of types to eliminate ambiguities in both words and
symbols. To address the flexibility and complexity of natural languages, many systems have adopted
controlled natural language—a restricted subset of natural language governed by formal grammar—to
allow users to express mathematical proofs in a way that is both natural and formal. Examples of
such systems include Mizar [[101]], NaProChe [102], ForTheL [103]], MathNat [[104]], and Verbose
Lean [103]]. Strictly speaking, these systems may not qualify as autoformalization since they do not
directly handle natural language in its entirety. Simultaneously, a high-level grammar-writing tool
called the Grammatical Framework (GF) [106] has been gaining attention. This tool allows for the
flexible development of customized grammars to parse mathematical texts directly. GF-based systems
include GLIF [107]], a framework for symbolic natural language understanding and processing, and
GFLean [108], an autoformalization framework that translates natural language statements into
Lean’s formal language.

Neural and LLM-based Autoformalization. Kaliszyk et al. [109, [110] conducted early ex-
periments using machine learning to parse informal mathematical texts, followed by Wang et al.
[L11} [112]], who applied neural machine translation techniques to convert informal mathematical
statements into the Mizar language. Unlike rule-based methods, machine learning approaches are
more flexible and can capture edge cases in natural language that experts might miss when creating
rules. Although Wang et al. [112] explored unsupervised machine translation [113]], most early
machine learning methods for autoformalization relied heavily on an aligned corpus of informal and
formal statements, which is difficult to obtain on a large scale.

LLMs like GPT-4 [3] represent a new paradigm of machine learning. These autoregressive models
are pretrained on vast amounts of Internet data and can be quickly adapted to various downstream
tasks through a few demonstrations, without requiring parameter updates—a capability known as
in-context learning. Wu et at. [37] showed that, with fewer than five expert-crafted examples, LLMs
can translate between formal and informal mathematical statements to some extent. This finding
is promising, as it suggests that we may not need to collect a large aligned corpus of informal-
formal statements—an almost impossible task given the variety of formal systems—to achieve
autoformalization. Another notable observation in Wu et al. [37] is that (auto-)informalization
is generally easier than (auto-)formalization. With the same model, about 30% accuracy was
achieved in formalizing competition-level math statements, while over 70% accuracy was achieved
in informalizing even more challenging undergraduate-level math problems. This insight prompted
follow-up research utilizing LLMs-based back-translation, where synthetic aligned corpora were
generated by auto-informalizing existing formal statements [38, [114]. Finetuning a smaller model
on this synthetic data led to notable improvements in autoformalization performance. Building on a
synthetic corpus, Lu et al. [115] further incorporated additional signals from the formal environment
to develop a process-driven autoformalizer.

LLMs have also significantly advanced the translation of natural languages into formal domain-
specific languages (DSLs) like SQL [[116] and linear temporal logic [[117, [118]]. In this paper, we
primarily focus on the more expressive formal languages used in foundational proof assistants. These
languages are capable of accommodating both statements and proofs of modern mathematics, but
come with the challenge of non-static vocabularies (definitions and proof tactics can evolve or expand
over time). Nevertheless, autoformalization and NL-to-DSL translation are closely related, sharing
techniques such as self-consistency and self-correction.

Application of Autoformalization. Autoformalization serves as a bridge between informal and
formal mathematical knowledge, resulting in three immediate applications: (1) data argumentation for
training neural proving agents (via autoformalizing informal theorem statements) [37,139], (2) guiding
formal theorem proving via informal proofs [81}82]], and (3) validating informal reasoning [83. [119].
The first two applications are closely related to neural theorem proving, which will be discussed in
detail in the next section (Sec.[3.2)). The third application will be examined in Sec.[3.3]

3.2 Neural Theorem Proving

Proving theorems in any sufficiently expressive formal system is undecidable [120]. Thus, theorem
proving inevitably requires heuristics. Deep learning has been widely used for learning heuristics to
find proofs in formal systems. Holophrasm [[121]] was the first system to demonstrate the feasibility
of training deep neural networks to guide proof search. Holophrasm used the Metamath formal
language [68] as its logical backbone, training gated recurrent unit (GRU) networks [[122] on human-
written formal proofs to serve as policy and value networks in Monte Carlo Tree Search (MCTS)—the
same search algorithm used in AlphaGo [78]. This training paradigm was expanded in GPT-f [34],
which trained a single Transformer model for predicting proof steps in Metamath. GPT-f enjoyed
substantial gains from pretraining on informal math-related data (arXiv Math, Math StackExchange,
Github). Subsequent approaches have trained richer architectures such as retrieval-augmented
Transformers [35]] and also exploited zero-shot prompting of general-purpose LLMs [36] 40]. We
now highlight several prominent ideas in this literature.

Expert Iteration. Since a formal theorem proving environment can guarantee the validity of proofs,
whenever a model finds a proof of a new theorem, that proof can be used as new training data. In the
context of theorem proving, expert iteration consists of alternating between (a) attempting a set of
unsolved problems, and (b) finetuning the model using new training data produced during the first

phase. This has been shown to lead to improvements in formal theorem proving [123}[124], including
in the recent work of AlphaProof [7]. However, gains tend to diminish after a few iterations. It is still
an open problem to obtain continuous improvements, leveraging the potentially unlimited feedback
that a formal verifier can provide.

Learning from Mistakes. A key benefit of formal proof environments is that they can provide error
messages when a proof step fails. COPRA [36], an approach that repeatedly asks a frontier LLM to
predict proof steps from within a search loop, uses such error messages as part of the LLM’s prompts.
COPRA is also equipped with a memory that stores a subset of the incorrect predictions that it made
while proving a particular theorem, and this memory is included in the LLM’s prompt. Because
of frontier LLMs’ ability to learn in context, these strategies reduce the odds of similar mistakes
being repeated again and again. However, not all mistakes result in immediate failures; many lead
to distractions or unproductive paths without making meaningful progress toward the proof goal.
Identifying and learning from such mistakes remains a challenge.

Informal Proof Sketches. Neural theorem proving in formal languages has also benefited from
informal proofs, generated in natural language. Notably, Draft, Sketch and Prove (DSP) [81]] proposed
to first have the LLM generate a “proof sketch”, in natural language, to then attempt to formalize this
sketch in Isabelle. Lean-STaR [[125] proposed to interleave formal and informal reasoning steps in
theorem proving in Lean. COPRA, mentioned above, also takes in informal proofs as an optional
input and uses them as part of zero-shot proof-step-prediction queries to a general-purpose LLM.

Library Learning. Human mathematicians can leverage a continuously growing library of mathe-
matical results to find new ones. Each new theorem potentially enters this library for reuse later in
higher-level work. Building towards this behavior, research in Al for formal mathematics has started
to explore the idea of library learning, where not only the search heuristics (neural policy and value
functions) improve with more data, but also the symbolic library that is available. Library learning
first gained popularity in the context of program synthesis, with systems such as DreamCoder [[126]
that are capable of discovering increasingly higher-level abstractions from its solutions to previous
tasks. For theorem proving, LEGO-Prover [127] demonstrated this idea in Isabelle, by proposing po-
tentially reusable lemmas to aid in the proof of a theorem at hand. Besides new theorems, researchers
have also explored learning tactics—procedural proof-generation strategies that shorten otherwise
lengthy low-level proofs, often tailored to a particular mathematical domain. Tactic induction has
been demonstrated to work in simpler formalisms [[128} [129], but has not yet been developed for
full-fledged environments such as the tactic languages in Lean or Coq.

Premise Selection and Retrieval. A large, changing library of theorems poses challenges for
training neural theorem proving models, since the prover should not be limited solely by the lemmas
and definitions it was given at training time. One architecture that can accommodate a changing
library is retrieval-augmented generation (RAG). In RAG, before attempting to generate (e.g., a proof
for a target theorem), we first retrieve potentially useful pieces of data from a database (e.g., lemmas
from a mathematical library), putting these in the context that is given to the LLM. Retrieving lemmas
that are likely to be used to prove a target theorem is a problem known as premise selection [130],
which has been extensively studied both in learning-guided [29} 1311 [132] and symbolic [[133H135]
theorem provers. Even before neural networks were directly applied to generating proofs, they had
been shown to be effective as premise selection models in earlier works like DeepMath [29].

ReProver, the architecture introduced in LeanDojo [35]], applied retrieval for neural theorem proving,
where it first retrieves lemmas from a mathematical library. The COPRA [36] approach also uses
retrieved lemmas as part of LLM queries. One desideratum in such retrieval-based approaches,
originally identified in LeanDojo, is success on a train/test split named “new premises”, where
each theorem seen at test time requires at least one premise that has not been seen during training.
This setup is closer to real use cases for a theorem prover, where human mathematicians might be
formalizing a new domain, frequently building on recently proved lemmas that did not exist in the
original training data.

10

3.3 Verified Reasoning in Natural Language

Many reasoning problems expressed in unstructured natural language are difficult to formalize
completely. In such cases, it is desirable to still have some form of verification for natural language
reasoning. Several works have proposed to “verify” natural language reasoning via trained, few-shot
prompted, or symbolic verifiers. For example, the paper introduced the GSMS8K dataset [15] of
grade-school mathematical word problems proposed finetuning GPT-3 to verify a partial solution.
Combining GPT-3 as a solution generator with the finetuned verifier produced substantial accuracy
gains. On this line of work, OpenAl later released PRM80OK, a large-scale dataset of human-
written feedback on step-by-step mathematical solutions, which has been used to explore training
verifiers [136]. For logical reasoning in natural language, NLProofS [137] proposed a step-wise
verifier, trained to evaluate whether a given conclusion is entailed by a set of premises, using it to
guide a step-by-step prover. Step-by-step verifiers can also be obtained by prompting an LLM in a
context dedicated to verification, as done in Natural Programs [61]]. In all of these works, while the
verifier cannot formally guarantee the validity of the reasoning, it nonetheless provided a boost in
overall performance and faithfulness of the responses.

As opposed to verifying directly in natural language, another line of work has explored using LLMs to
first formalize a problem given in natural language, then leverage a symbolic solver to find solutions.
In this thread, SatLM [[138]] and LINC [119] have both leveraged SAT/SMT solvers as a logical
backend for reasoning problems, with the LLM only being responsible for parsing the original
problem into an appropriate formal counterpart. In both methods, however, the system does not
provide a step-by-step solution, since all the reasoning happens inside the solver, in a form that is
challenging to translate back to natural language. LogicGuide [[139] proposed to use a formal system
to constrain the step-by-step deductions from the LLM, producing chain-of-thought reasoning that
alternates between formal and natural language. In all of these systems, while the formal reasoning is
guaranteed to be sound, it is still difficult to assess whether the natural language problem has been
properly formalized. This typically stems from the fact that natural language allows for ambiguity and
reliance on common sense or general world knowledge, whereas the formal problem must be fully
unambiguous and all of the assumptions must be fully written down, which is typically challenging.

3.4 Formal System Verification and Verified Generation

The formal verification of software [[140-142] and hardware systems [143|[144] has long been among
the foremost applications of formal mathematics. In this area, one first specifies the correctness and
security requirements of a system as formal assertions. Next, theorem proving and model-checking
techniques are used to prove that the system satisfies its requirements or, alternatively, to find bugs.

Specifically, deductive theorem proving has been applied to a range of critical systems, including
microprocessor designs [[145]], file systems [[146,[147], OS kernels [46|[148]], cryptographic implemen-
tations [[149,[150], compilers [47], distributed systems [[151]], and network infrastructure [152}[153].
However, writing formal specifications and proofs that are necessary for verification requires substan-
tial manual effort. For instance, verifying the seL.4 OS kernel involved more than 20 person-years of
intricate engineering work [154].

Al for formal mathematical reasoning offers a promising way to automate many tedious aspects of
theorem proving applied to system verification, drastically reducing its costs. Advances in neural
theorem proving, as detailed in Sec.[3.2] can be effectively harnessed in software and hardware
verification efforts that use formal mathematics, facilitating the generation of initial proofs [36),
1551 1156] and the refinement of existing proofs [40, [157]. Moreover, LLMs are useful for assisting
with various SMT-based verification tasks, including inferring necessary loop invariants [158-H161]],
generating helpful assertions [162]], and translating natural language to formal specifications [163].

A closely related challenge is employing Al to simultaneously generate code with formal proofs
of correctness and security. For example, LLMs have recently made remarkable progress in pro-
gramming tasks [164]. However, LLM-generated code can be buggy and insecure [1635}166], and
some recent research finds LLM-generated code to exhibit more vulnerabilities than human-written
code [[167]]. Coupling generation with formal verification is a natural way to prevent such failures.

One possibility here is to first develop a formally verified program (or design) in a framework like
Coq and Lean, with AT assistance, and then to translate the developed artifact into a more efficient
lower-level implementation using standard compilers. This approach establishes a direct arc between

11

theorem proving and generation. Another possibility is to incorporate LLM-based code and proof
generation into a high-level verification-friendly language like Dafny [168] or Verus [[169].

The design of formal specifications is a particularly challenging aspect of formal methods. However,
the autoformalization techniques mentioned in Sec. [3.I]can help generate formal specifications from
natural language or code. There are also settings such as transpilation [[170] in which specifications
come for “free”. In transpilation, one starts with code for a system in a source language and uses Al
to generate code in a different target language. The two systems are required to be equivalent; thus,
the source-language code forms a complete specification for the target-language code.

4 Open Challenges and Future Directions

Formal mathematical reasoning presents a wealth of challenging problems for Al. Here, we ex-
plore several open challenges and promising directions, including data and algorithms for formal
mathematical reasoning, Al tools for assisting human mathematicians and proof engineers, as well
as integrating Al and formal methods to generate verifiable code. While the discussion inevitably
reflects our own perspectives and preferences, we hope it will provide inspiration and a roadmap for
the broader community to advance in this field.

4.1 Data

How to overcome the scarcity of formal data?

* Autoformalizing informal math from textbooks, research papers, and lecture notes.
» Generating synthetic conjectures and proofs from mathematical axioms.

* Knowledge transfer from different proof frameworks and data-rich modalities such as code.

A key driver of the performance improvements in LLMs has been captured in empirical scaling laws:
LLM performance tends to broadly and consistently improve when we grow the model size and
data size together [[18||19]]. However, this pace of improvement due to scale alone faces significant
challenges when applied to formal mathematics, due to the scarcity of human-created formal proof
data. For instance, the Proof Pile dataset [[10], which aggregated proofs from six different formal
languages (Lean, Coq, Isabelle, HOL Light, Mizar [171]], and Metamath [8])), collected only 500MB
of formal proofs. This is orders of magnitude smaller than relevant datasets for training LLMs in other
domains, such as Python code available on GitHub. The data scarcity issue is even more pronounced
in research-level mathematics, where even informal data is limited. At the research frontier, data will
arguably always be scarce; by the time we have abundant data on a particular domain, there might
not be much novel research left to be done there.

Researchers have been exploring a few different strategies to overcome data scarcity. The first is
autoformalization: attempting to automatically formalize informal mathematical texts. We have
substantially more informal math data available on the web in the form of textbooks, research papers,
lecture notes, and other resources, far exceeding the current formal math libraries. One of the hopes
in the field is to create a positive reinforcement loop when attempting to automatically formalize these
sources. Since formal proofs can be mechanically checked, if a system successfully translates even a
small subset of the available informal math data, it can learn from those translations for training in an
expert iteration loop, potentially covering an increasingly larger set with each iteration (Sec. [3.2).

The second approach relies on synthetic data generation using a formal system. AlphaGeometry [3]]
recently took this approach, completely eschewing pretraining on human-written problems and instead
relying solely on synthetically generated geometry problems and solutions. This strategy leverages
the fact that mathematical axioms contain, in principle, infinite potential data, since they entail all of
the provable facts in the domain. If it can be generalized, a significant benefit of this approach would
be its applicability to completely new domains of mathematics, where even informal data (such as
research papers) might be scarce. By generating synthetic data, Al systems can potentially explore
and learn from the vast space of possible mathematical problems and solutions, at a scale that can
drastically surpass the pace of human-generated training data.

12

Autoformalization and synthetic data generation were combined in AlphaProof [7], which auto-
formalized one million IMO-like informal problems into one hundred million formal theorems,
whereas proofs were synthetically generated in an expert iteration loop. It remains an open question
to generalize this approach beyond domains where a large number of human-written problems are
available, as will be the case in research mathematics. For those domains, we will likely also depend
on conjecturing new, unseen statements [[172]].

A third approach is the use of multilingual data. Different formal proof frameworks tend to have
different distributions of proof data; for example, formal software verification efforts have historically
used Coq and Isabelle more than Lean, while recent efforts to formalize research mathematics are
largely Lean-based. Building Al systems that can interact with different proof environments [36]
is one way to get the best of different proof frameworks. An alternative path is to translate formal
theorems and proofs across frameworks, but this direction remains relatively unexplored as of now.

Another promising strategy to enhance AI’s capabilities in formal mathematical reasoning is transfer-
ring knowledge from different modalities. Specifically, the code modality is closely related to formal
mathematics as both require symbolic reasoning. This similarity has been exploited to improve Al’s
skills in mathematics during both inference [[173] and training phases [174}[175]. Prior research has
shown that multi-lingual code models often outperform mono-lingual models when provided with
equivalent training resources [[176] and knowledge of high-resource languages can be transferred to
low-resource ones using program translation [[177]. This raises an interesting research question: how
can we leverage datasets of data-rich programming languages such as Python and C/C++ to enhance
reasoning in formal mathematical languages? Moreover, considering that current Al models for
formal mathematics typically focus on single languages [32,[35[178], there is a promising opportunity
to develop a multi-lingual model (e.g., combining Lean, Coq, and Isabelle), potentially boosting
performance across all these languages.

4.2 Algorithms

How to scale up autoformalization?

* Automatic metrics for evaluating autoformliazed statements.
 Breaking the autoformalization process into small steps (like in chain-of-thought).

* Autoformalizing with more interaction with the formal system.

Autoformalization at Scale. As a bridge between informal and formal mathematics, it should
be emphasized that autoformalization is a task beyond pattern matching. For example, given an
informal statement we might formalize it in multiple ways that are syntactically different but logically
equivalent. Alternatively, two syntactically similar formal statements can certainly bear opposite
logical meanings. As Jiang et al. [38] observed, neither classic automatic machine translation metric
like BLEU [179] nor compiling success rate really correlates with human evaluation, but relying on
human evaluation is obviously not scalable. Without an automatic metric to evaluate autoformalized
statements, it would be challenging to build a robust statement formalization pipelines. Nevertheless,
wrongly autoformalized statements can still be utilized: In AlphaProof [7]], DeepSeek-Prover [39],
and Lean Workbook [[180]], agents attempt to simultaneously prove and disprove autoformalized
statements, and either will leave a trace to further reinforce the neural proof agents. Still, we want to
have an automatic metric more aligned with human judgment so that the quality of autoformalized
statements can be truly evaluated at scale. Possible ideas include checking logical equivalence via
automated theorem provers [82] [181].

Depending on the level of mathematical abstraction, autoformalization can range from a relatively
straightforward translation task (e.g., formalizing ‘1 4+ - -+ + n = n(n + 1)/2’) to a hard reasoning
task (e.g., formalizing ‘every finite group of odd order is solvable’) that requires retrieving existing
definitions or even inventing new ones. For a hard reasoning task, it is natural to break down the
autoformalization process into smaller steps, like in chain-of-thought prompting. For example, Wu
et al. [37] observed that a common source of errors in autoformalizing statements is the mismatch
between informal and formal definitions, which might be alleviated by retrieving definitions before
attempting to formalize the statement. When autoformalizing proofs, a natural approach is to convert a

13

large piece of informal proof into a formal sketch before attempting to fill in the details. An alternative
approach, used in Lean-STaR [[125], is to sample one natural-language step each time and use it to
synthesize the next proof tactic. We envision that through smaller steps and process supervision [[136]],
the performance of existing autoformalization models could be further improved [115]].

Finally, given that formalization is an interactive process for human experts, often involving extensive
trial and error with the proof assistant, we believe that a good autoformalizer should inherently support
such interactivity. Formalizing statements may require introducing new definitions and data types
(e.g., in the 2024 IMO P5), while autoformalizing proofs could benefit from a recursive approach to
address gaps in informal proofs. Both aspects call for autoformalization to be more interactive [182].

How to improve the model architecture for mathematical reasoning?

* Multi-step reasoning, long contexts, abstractions, and hierarchical planning.
* Controlled studies on synthetic benchmarks for diagnosing reasoning failures.
* Scaffolding the model with inference-time techniques such as retrieval and search.

Models for Mathematical Reasoning. Machine learning models for mathematics should possess
two key capabilities: First, the model should be capable of memorization, allowing it to store mathe-
matical knowledge, such as facts, definitions, and existing theorems. Second, the model should be
able to reason effectively about its knowledge, which necessitates multi-step reasoning, handling long
contexts, learning abstractions, and hierarchical planning. In recent years, Transformer-based Lan-
guage models [183] have become the leading architecture for AI mathematical reasoning [34} |37, 50].
Transformers excel at memorization: They are the most scalable architectures to date for Internet-scale
pretraining [[18,[19]], during which their model parameters are adapted to internalize mathematical
knowledge in the pretraining data. Although a precise understanding of how Transformers extract and
memorize knowledge is still nascent [184], their effectiveness is widely recognized in practice [[185]].

However, whether Transformers can reason logically is an open question. On the one hand, they
have demonstrated exceptional performance on numerous reasoning benchmarks [16,|186]]. On the
other hand, they still exhibit reasoning flaws, even in simple settings [187]. For example, Wang et al.
[188] show that Transformers learn to reason only through grokking, which occurs when a model is
trained far beyond the point of overfitting—a scenario not applicable to pretrained LLMs. Zhang
et al. [189] find that Transformers fail to learn true reasoning that is generalizable across different
data distributions. Furthermore, LLMs have been found to fall short on planning [[190-192].

Formal mathematics provides a valuable domain for understanding and improving Transformers’
capabilities in reasoning and planning, as well as for developing alternative architectures [193-
197]]. When experimenting with new architectures, we often face the dilemma that these models
underperform standard LLMs because they do not readily benefit from large-scale pretraining, whereas
limiting to pretrained models would restrict the model choice. Formal mathematical reasoning
may help address this dilemma through synthetic benchmarks [198]. These benchmarks can be
procedurally generated based on the formal system’s inference rules, and they can have adjustable
knobs for controlling the difficulty levels or testing a specific capability, such as generalization to
longer reasoning chains [199]. Additionally, performing well on these simple benchmarks typically
requires only small models that can be trained within days using a few GPUs. This setup enables
controlled scientific experiments, which help diagnose the model’s failures and discover insights that
can potentially be scaled up in follow-up studies.

Besides designing an architecture that inherently excels at reasoning, another highly effective approach
is to scaffold the model with external techniques like chain-of-thought [12], retrieval [35], and
search [124]). Next, we will discuss some of these topics in detail.

How to search for proofs effectively?

* Scaling up the search to leverage more test-time compute.
 Systematic evaluation of models, search algorithms, and hyperparameters.
* Value models for assessing and prioritizing proof goals.

14

Proof Search and Test-Time Compute.

Search and learning are the two most important classes of techniques for utilizing
massive amounts of computation in Al research. — Richard Sutton [200]

Proof search is fundamental to many formal reasoning systems. In particular, most existing neural
theorem provers (Fig. @) generate proofs by combining tactic generation with search algorithms
such as breadth-first search [201]], best-first search [35]], or Monte Carlo Tree Search (MCTS) [[124]].
Scaling up the proof search to leverage an enormous amount of test-time compute has been crucial
to the success of AlphaGeometry [S] and AlphaProof [7] on IMO problems. Furthermore, despite
originating from formal reasoning [202]], proof search has recently gained prominence in natural
language reasoning [136} [137, 203} 204]. There, LLMs’ reasoning is scored by a verifier model
(also referred to as “process-supervised reward model”) and is searched to arrive at a final solution,
much like searching for a proof. Scaling test-time computation during search has led to promising
results [205]] and is likely a key component of OpenAl ol [17]E]

Despite the importance of proof search, many myths and trade-offs surrounding it remain unexplored.
First, is proof search truly necessary? Baldur [40] and DeepSeek-Prover [39] use LLMs to generate
whole proofs directly, without search. This approach offers substantially lower latency, making it
attractive in interactive applications such as proof completion in code editors. A widely held belief
supporting proof search is that decomposing proofs into individual steps can improve data efficiency
and generalization. While plausible, we are unaware of empirical evidence from a systematic
comparison between search and whole-proof generation. Second, should we use small models or
big models in proof search [206]? Given a fixed compute budget, smaller models allow exploring
more steps. For instance, Graph2Tac [207] suggests that simple models like k-nearest neighbors can
perform competitively with Transformers. In addition, how do different search algorithms compare
(e.g., MCTS vs. best-first search) ? What is the effect of decoding algorithms (e.g., sampling vs. beam
search) and hyperparameters (e.g., temperature)? How to search for proofs efficiently with access to
high-end GPUs (typical in Al research) vs. consumer CPUs (typical among Lean users)?

To resolve these myths, it is necessary to systematically evaluate existing theorem proving methods,
as this will provide clarity and guide the development of future provers. However, such an evaluation
is currently lacking and would require substantial effort. Conducting a fair and unified evaluation of
theorem provers presents significant challenges. It is unclear how to compare provers targeting differ-
ent proof assistants. While cross-system benchmarks like MiniF2F [208]] and PutnamBench [209]
have formalized problems across multiple proof assistants such as Isabelle and Lean, this alone does
not imply the results are comparable. The difficulty of proving a theorem can vary widely between
proof assistants due to the varying levels of proof automation. Even within a single proof assistant, a
theorem prover’s performance is multifaceted and depends on resource constraints (e.g., hardware
and time limits), making it difficult to consolidate performance into a single metric. A comprehensive
evaluation that carefully addresses these challenges would be immensely valuable to the community.

Despite the challenges in evaluation, researchers have been exploring various directions to improve
proof search. Effective search requires prioritizing the most promising goals for further exploration.
Mathematicians often rely on intuition to gauge a goal’s promise, and the popular MCTS algorithm
can be viewed as its Monte Carlo estimation. One fruitful direction is developing value models for
assessing proof goals, through finetuning [[124}210] or by prompting instruction-following LLMs as
demonstrated in Tree of Thoughts [211]]. However, assessing the promise of proof goals remains a
challenging task. Minor changes in the goal can impact its provability. Furthermore, while positive
examples (promising goals) can be extracted from existing proofs, negative examples are much harder
to obtain. One approach is to use the current model to generate negative examples during proof search
and try to bootstrap the model carefully. Alternatively, when working in a narrow domain, we can
leverage domain-specific knowledge to evaluate proof goals (more on domain-specific provers later).

Proof search is important, but it alone does not solve theorem proving. Unlike Go, a fundamental
challenge in theorem proving is a discrete, infinite action space whose structure is not fully understood.
This unbounded nature makes it difficult for models to generate effective actions through supervised
learning or exploration via reinforcement learning. Proof search cannot succeed if the model cannot
produce high-quality actions in the first place. Many believe that mathematics requires creativity, and
in the context of theorem proving, creativity can manifest as actions exceeding the current model’s

3This is largely speculative, as there is limited public information about the internals of ol.

15

capabilities, akin to the “divine move (.2 —3)"—a legendary concept in Go. We would not expect
to find them if the action space were an infinite, unstructured list. Fortunately, mathematics is highly
structured, making it possible—though still challenging—to find the divine moves [212]. In the
remainder of this subsection, we will explore several ways to leverage structures in mathematics,
including hierarchies, abstractions, external knowledge, and domain-specific knowledge.

How to exploit hierarchies in theorem proving?

* Decomposing large, high-level proof goals into smaller goals progressively.

Exploiting Hierarchies in Theorem Proving. Theorem proving can benefit from exploiting the
natural hierarchies that organize mathematical results: Big theorems follow from smaller lemmas,
and even those lemmas can be thought of as progressively accomplishing smaller sub-goals during the
proof, until each goal is small enough to be “obvious” in informal proofs, or closed in a single step in
a proof assistant. Several existing theorem proving systems attempted to exploit this hierarchy. For
example, Draft, Sketch, and Prove (DSP) [81]] used an informal proof (written by LLMs or humans)
to obtain a formal “proof sketch”—a skeleton of the formal proof with “holes”, i.e., open goals left
unproven, which yields a hierarchical structure for the formal proof. However, even a single open goal
in the proof sketch might require significant effort to prove. POETRY [213]] proposed to recursively
decompose proof goals using an LLM. It verifies that each of the intermediate decompositions is valid:
When a larger proof goal is decomposed into several smaller goals, it must be provable, assuming the
smaller goals can be proved. On another use of hierarchy, LEGO-prover [127] proposes separate,
potentially helpful lemmas, that it tries to prove first when it fails to prove a given theorem directly.
While these works have begun to exploit the potential of hierarchical decomposition, it is still a
significant challenge to decompose realistic high-level goals (or sometimes even individual informal
proof steps) with the current capabilities of LLMs. Ideally, we would like humans to be able to
provide high-level targets, and let Al do the work of progressively closing the gaps between what is
currently known (e.g., the current proof state, or the existing library) and what it needs to achieve.

How to learn mathematical abstractions?

» Learning to construct new definitions, lemmas, and tactics in full-fledged proof assistants.

Learning Mathematical Abstractions. While learning mathematics, humans can learn progres-
sively more sophisticated mathematical abstractions. We start learning and operating on natural
numbers by counting; years later, those operations show up in solving equations, but don’t require as
much attention anymore. Later on, even solving entire systems of equations becomes the simplest step
in the context of harder problems. One research challenge is how to allow machines to progressively
construct these abstractions. In interactive theorem provers, these abstractions are encapsulated in
new definitions, lemmas, and tactics—these encode proof strategies that are helpful in a particular
domain or kind of proof goal. In principle, these forms of abstraction aren’t essential for formally
representing mathematics, since what they do can always be repeated inline in a given context. Yet,
progressively developing new abstractions is central to the human practice of mathematics.

Most theorem proving systems focus on taking in a set of definitions, lemmas, and tactics, leveraging
those to prove new theorems. However, several recent lines of research have proposed methods for
learning abstractions. The interactive theorem proving community has developed several methods
for lemma synthesis [214]], typically with the goal of helping a user prove a particular theorem
interactively [215]]. In AI for mathematics, LEGO-Prover recently used LLMs to propose and prove
new lemmas that also get added to its library, helping it prove further theorems. Lemma mining from
existing proof corpora has also been explored, such as in HOL Light [216] and Metamath [217]:
these lemmas, not explicitly factored out by humans, are still useful for automation. On learning
tactics, Peano [128]] and LEMMA [218]] have proposed to learn simple proof strategies from an
agent’s own solutions to past mathematical problems, in a bootstrapping fashion. These so far have
been demonstrated only in simpler formal systems, and it is still an open challenge to synthesize
entirely new tactics in full-fledged formal theorem proving languages.

16

How to utilize existing mathematical knowledge?

* Tailored retrievers for formal mathematical reasoning.
* Handling dynamically growing knowledge bases.

Incorporating Information from Knowledge Bases. Another direction is to explicitly incorporate
knowledge from databases of pre-existing lemmas and definitions. To some extent, LLMs used in
math reasoning tasks are repositories of mathematical knowledge. However, some of the knowledge
relevant to proofs may not be represented in the LLM’s pretraining data; even if this knowledge were
present, it may not be easy to retrieve. Therefore, the use of an explicit retrieval mechanism can help.

Among existing methods, ReProver [35] and COPRA [36] use retrieval mechanisms and achieve
nontrivial performance gains from their use. These approaches use standard retrieval mechanisms,
such as BM25 [219] and Dense Passage Retrieval [220]. It is possible that retrieval mechanisms
more tailored to formal mathematics would perform better. For example, one can imagine developing
retrieval methods based on structured, neurosymbolic embeddings that use vector representations of
math facts while also allowing symbolic methods to filter out irrelevant facts.

Another angle is to consider scenarios in which the external knowledge base grows over time.
For example, one can imagine a mathematical reasoning system that decomposes high-level proof
objectives into subgoals, caches a subset of these subgoals as modules, and appropriate modules for
use in subsequent (or concurrent) proof efforts. Deciding which subgoals are “interesting” enough to
be modularized in this way is an interesting challenge.

How to reconcile the specialist and generalist approaches?

* Generalist methods for identifying cross-domain connections.
* Specialists for effectiveness in individual domains and collaboration with mathematicians.

* Combining generalists and specialists, e.g., by equipping LLMs with domain-specific tools.

Generalist vs. Specialist. Mathematics encompasses a wide range of subdomains, and so far, our
discussions have largely remained domain-agnostic. In principle, most mathematical domains can
be formalized in proof assistants such as Lean, enabling LL.Ms to perform tasks such as theorem
proving and autoformalization. LLLMs only need to process the data as plain text, without accounting
for the specifics of each domain. This “generalist” approach has clear merits: it is generally
applicable and facilitates knowledge sharing across domains. Modern mathematics is too vast for any
individual to master everything. LLMs, however, with massive training data, can easily surpass human
mathematicians in terms of breadth of knowledge. Numerous historical mathematical breakthroughs
resulted from uncovering connections between seemingly unrelated subjects. For example, Wiles’s
proof of Fermat’s Last Theorem [221] emerged from identifying connections between elliptic curves
and modular forms. In the long term, it is desirable to have LLM-powered generalist Al to augment
human mathematicians in identifying such cross-domain connections.

However, each mathematical domain possesses its own idiosyncrasies and unique techniques. The
generalist approach risks missing the opportunity to exploit these domain-specific insights. Many
Al4Math systems are specialists in a particular domain. A notable example is AlphaGeometry [5],
which specializes in proving Euclidean geometry theorems in math olympiads. It consists of three
key components: (1) an algorithm that generates synthetic theorems and proofs; (2) a symbolic
reasoning engine for deducing basic geometric properties; and (3) a Transformer model for introducing
auxiliary constructions (points, lines, or circles not present in the original problem). Each component
is designed specifically for 2D Euclidean geometry and leverages domain knowledge to achieve
efficiency. While some high-level ideas in AlphaGeometry could potentially be applied to other
domains, adapting the entire system would require substantial redesign.

Specialists like AlphaGeometry are highly effective in their domains, often solving problems that
are currently challenging to address in a fully general manner. These systems leverage domain
knowledge in various ways, e.g., for proof automation, evaluation, finding counterexamples, or
numerical computation [82} 94} 222 |223]]. Building specialists for other mathematical domains will

17

continue to be a fruitful research direction, particularly for collaborating with mathematicians who
want to use Al for their domain of interest (Sec.2.3). In addition, narrow domains offer a rich set of
controllable tasks and environments [[198]] for investigating the reasoning capabilities of AI models.

The Bitter Lesson [200] stresses the great power of general-purpose methods, and Al researchers
always strive for generality. Even when designing specialists, we value insights that have the potential
to generalize. Despite this, we anticipate that Al math specialists will coexist with generalists in the
foreseeable future. An exciting avenue lies in combining the two, such as by equipping a general
LLM with domain-specific algorithms as tools. Ultimately, AI might become powerful enough to
learn and exploit the unique characteristics of each domain in a universal way.

4.3 Tools for Assisting Human Mathematicians

How can Al better assist humans in formal mathematics?

* Resources, incentives, and engineering efforts to improve usability and user-friendliness.
¢ Behavioral studies of how mathematicians work with formal tools.
* Tools that enable large, distributed collaboration.

While improving performance on standardized benchmarks is a means to coordinate efforts and
measure progress in Al, many significant challenges only arise when trying to build tools that
integrate with the workflow of mathematicians using proof assistants. Working mathematicians often
report that the bottleneck for the adoption of tools, rather than technical features, is their usability
and user-friendliness [224} [225]]. To productively integrate Al tools for assisting mathematicians,
the field can drastically benefit from behavioral studies of mathematicians working with formal
tools in an ecological fashion. We note that the Human-Computer Interaction and Programming
Languages communities have both collaborated in such studies for users of regular programming
languages, leading to insights into how human programmers learn and conceptualize their tools [226],
their confusions and challenges, and ultimately how to improve these tools and the way we teach
them [227]. We envision that many methodologies from such work can be transported to proof
assistants, ensuring that the tools we build serve the needs of human mathematicians.

Besides aiding the workflows of individuals, one key advantage of proof assistants that has been
highlighted is that they enable large-scale collaboration among mathematicians [224, 228]]. Tools
such as Lean Blueprints [229] allow large mathematical projects to be conceptually broken down into
modular components, and each of those can be worked out independently. Trust in other’s work, which
traditionally has either required personal trust or understanding and checking all of their work, is now
facilitated by a formal proof checker. These tools are likely to be just a first generation of what formal
proof assistants can provide for collaboration in mathematics. In the future, collaboration might
happen between both humans and computers in a distributed fashion [228]]; Al agents might make
autonomous contributions to human projects, and vice-versa, mediated by formal tools that guarantee
correctness. This vision can likely borrow from previous experiences in distributed, collaborative
computing platforms from other fields, like Folding@Home [230], where anyone can contribute
computing power to protein folding. The same is possible for proving mathematical theorems.

4.4 Formal Verification and Verified Generation

How can Al assist humans in developing correct and secure software?

* Incorporating formal methods into Al-aided system design and implementation.
* Enhancing Al capabilities for formal software and hardware verification.

* Coupling Al-based generation and formal verification.

In alignment with our stand for Al4Math, we envision a growing necessity for developing formal
reasoning techniques for Al-based software and hardware generation. These techniques can provide
developers with assurance on the correctness and security of generated artifacts—an indispensable
step for deployment, which currently often requires significant manual effort. While syntactical

18

correctness can be guaranteed by constrained decoding [231},232]], ensuring other semantic properties,
such as those validated by static analysis and compilers, remains an open challenge. Moreover,
formal reasoning can assist programmers in understanding Al-generated code that they did not write
themselves. Recent research demonstrates this through the live demonstration of runtime values [233].
It is a promising direction to explore the use of other kinds of formal methods in this context.

Formal verification bears some resemblance to the research mathematics setting but also poses unique
challenges. For example, a necessary but challenging step for formal verification is encoding the
target system semantics and the correctness requirements in the proof assistant. This process is akin
to formalization of informal mathematics [37]]; however, while statements in mathematics research
tend to assert properties of established mathematical objects, theorems in formal verification typically
concern bespoke procedures and datatypes. Also, proofs in formal verification tend to be more
repetitive and heavy on case-splits and inductive reasoning about recursive functions and datatypes.
Finally, unlike statements in mathematics research, real-world software and hardware systems are
characterized by large codebases and frequent changes. For instance, the verification of the seL4 [46]
operating system kernel consists of about 200,000 lines of specifications and proofs in Isabelle.
Verification of these systems requires not only theorem proving but also rigorous management of
specifications and proofs [142]]. An exciting yet underexplored direction is leveraging Al’s strong
capabilities in code and mathematics to enhance the entire process of proof engineering [[142].

It is natural to couple formal verification and Al-based generation into approaches that simultaneously
generate code (or designs), formal specifications (i.e., pre-/post-conditions, loop invariants, and helper
assertions), and proofs. Given these generated artifacts, a program verifier or a theorem prover can
be called to check if the code is consistent with the specifications and proofs. This approach has
been explored in recent research [168],[2344236]] and holds great potential in reducing verification
efforts and enhancing software and hardware reliability. However, a key challenge is ensuring the
trustworthiness of the generated specifications—that they are neither too strong nor too weak and
accurately reflect developers’ intent.

5 Milestones and Success Measures

Having outlined directions for advancing this field, a key question is: how can we effectively measure
progress? Inspired by the levels of automation for self-driving cars [237], we propose a framework for
categorizing AI’s capabilities in formal mathematical reasoning. Focusing on individual areas such
as theorem proving and autoformalization, we define various capability levels and review existing
benchmarks for evaluation. Existing benchmarks fall short when it comes to evaluating higher-level
capabilities, particularly in nascent areas like conjecturing. To address these gaps, we highlight the
pressing need for new benchmarks and, in many cases, new evaluation methodologies.

5.1 Theorem Proving

Table 1: Theorem proving: capability levels and benchmarks for evaluation.

Level Capability Evaluation and benchmarks

0 Checking formal proofs Achieved by modern proof assistants

1 Assisting humans to develop proofs by suggest- Human-centered evaluation
ing definitions, lemmas, proof steps, etc.

2 Human-implemented tactics for automating Domain-specific benchmarks
domain-specific proof goals

3 Proving simple theorems automatically in a CoqGym [33]], LeanDojo [35], MiniF2F [208]],
domain-general fashion PutnamBench [209], TPTP [238]], FIMO [239]]

4 Contributing to formalization projects au- New benchmarks of code and metadata from
tonomously GitHub, similar to SWE-bench [240]]

5 Solving problems and discovering new math be- New benchmarks and evaluation methodology

yond the human level

for unknown territories

19

Most of the current effort in Al for formal mathematics has been centered around automated theorem
proving. Here, given a theorem, we want Al to produce a proof. Formal systems, such as Lean, offer
an immense advantage to pose this problem, since once a proof is found, it is guaranteed to be correct,
even if it might be difficult to parse by humans. We now discuss milestones and benchmarks in Al
for formal theorem proving (Table|[T)).

The most basic capability level (Level 0) is simply recognizing a correct formal proof. It is
already present in systems such as Lean [24} 25]], Coq [21], Isabelle [20], Agda [241], and many
others, and can be obtained from a wide range of logical foundations. Though proof checking is
essentially a solved problem for formal proofs, it can still be incredibly challenging to fully formalize
even existing, well-understood informal proofs, to the level where they can be mechanically verified
by a formal system. Human mathematicians, in contrast, are able to evaluate incomplete, “hand-wavy”
arguments, often being able to find flaws and point out counterexamples even in the absence of a
complete proof. Thus, even our proof checking systems can still be improved in this direction by
requiring less effort from the user and putting more responsibility on the verifier. We currently do
not have a good benchmark for the verification of incomplete, high-level proofs. Since these proofs
often have large gaps that are left unwritten, checking them requires being able to fill those gaps,
which is generally equivalent to the full problem of producing proofs (which the next capability levels
are about). For benchmarking progress in formalizing mathematics, one folkloric standard used to
compare different proof assistants is Freek Wiedijk’s list [242]] of one hundred theorems. As of today,
all theorems in the list have already been formalized (by humans) in at least one proof assistant.

Moving beyond giving feedback on proof correctness, we can think of varying levels of systems
that can help humans develop proofs. Level 1 would be to suggest potentially useful pieces of
data, without attempting to write proofs yet. Here we include library search engines, such as
Moogle [243]], Loogle [244], and LeanSearch [2435]], which can find useful theorems or definitions, or
“copilots” [43}1246] that can generate contextual completions interactively. One common use case is
to search for relevant definitions from the current goal and see what is already known about those
(e.g., see theorems involving the sin function). These tools can be highly helpful, though the main
job of deciding what to search for and how to develop the proof is still a human responsibility.

Capability Level 2 and above contain systems that generate proofs, either fully or partially. The
most basic level of proof automation is (human-implemented) tactics: domain-specific procedures
that are capable of automating certain classes of proofs, often serving as simpler steps in larger proofs.
An example would be a tactic such as omega in Lean and Coq, which can automatically solve a large
class of equality and inequality proof goals, or hammer tactics [247]], which outsource the current
proof goal to an external (most commonly first-order) automated theorem prover. While limited in
domain, these procedures can already lower the burden on human users to formalize results. Still, up
to this level, no learning-based system is involved: this level of automation mostly reflects the human
ingenuity required to engineer domain-specific methods for producing proofs.

At Level 3, we include systems that can automatically prove theorems in a domain-general
fashion, albeit still limited to simple theorems. This encompasses most current neural theorem
provers [35} 213} 222]]: current systems are typically trained on human-written proofs, and can
generally be applied to any domain. Several of the most recent benchmarks in neural theorem proving
target this level of capability: CoqGym [33], LeanDojo [35], MiniF2F [208]], PutnamBench [209]],
TPTP [238]] and FIMO [239] are prominent examples of such evaluations. However, in practice, we
are still limited to relatively simple proofs, typically not the most time-consuming ones in the context
of a larger project. Moreover, current systems generally assume a static library of definitions and
previous lemmas, and they target well-posed statements (in fact, in these evaluation benchmarks, we
know all the statements to be true, since humans have already proved them). These systems can still
be helpful by proving technical lemmas or closing gaps in larger proofs.

Level 3 is the last capability level covered by existing evaluations. One level above, we have all
the activities that human mathematicians engage in while developing formalization projects. These
go much beyond proving lemmas that are given to them, as evaluated in neural theorem proving
benchmarks. In a new formalization, a large part of the effort lies in choosing how to formally describe
the domain of interest in the first place: what definitions to use, and how to break down the main

20

results of interest into sufficiently small lemmasE] These activities happen at the formal and informal
levels simultaneously: for instance, in Lean, mathematicians have been using Blueprints [229] as a
way to structure projects, divide up the work, and generally reason about how a large result might be
broken down into manageable components. A system of capability Level 4 should be able to plan
and execute formalization projects autonomously, breaking down larger results, stating new
definitions and lemmas, and potentially exploring different alternatives as the project develops.
This would already significantly accelerate progress in formal mathematics. For instance, we can
expect recent papers to be formalized by Al at this stage. To evaluate Level 4 systems, it would be
helpful to have new benchmarks constructed from the GitHub metadata, such as issues and commits,
of real-world formalization projects. SWE-bench [240], a benchmark from software engineering,
offers a model, but similar benchmarks for formal mathematics are yet to be created.

Finally, we might one day expect to have systems that go beyond what human mathematicians
have been able to accomplish, solving existing open problems, or perhaps even formulating new
interesting problems on their own. Currently, formal systems are typically used to formalize results
that human mathematicians have first done informally. If one day Al becomes able to autonomously
make mathematical discoveries, we can expect these discoveries to be made in a formal system.
Otherwise, the cost of checking Al outputs will be too high, just as it currently is for verifying human
mathematical proofs at the highest levels. Being able to solve problems beyond human level would
constitute capability Level 5. While this seems categorically out of reach for any of the current Al
systems, one fundamental challenge will be to be able to measure progress meaningfully towards this
open-ended goal. A major difficulty with measuring progress towards mathematical discovery is that
our current evaluations only test knowledge of current mathematics, while at this level we will want
systems to be able to reason about new domains, which we ourselves might not know much about.

5.2 Verified Reasoning in Natural Language

Table 2: Verified reasoning in natural language: capability levels and benchmarks for evaluation.

Level Capability Evaluation and benchmarks

0 Stepwise natural language reasoning w/o verification ~ GSMSK [15], AQuA [248]

1 Stepwise natural language reasoning with neural ver- MATH [16], Fallacies [249], Process-
ification Bench [65]

2 Tool-integrated reasoning using SymPy, NumPy, etc. =~ MATH [16], AIMO Progress Prize [250]

3 Reasoning seamlessly in natural language and for- New benchmarks for evaluating final an-
mal systems such as Lean swers and intermediate steps; problems dif-

ficult to formalize, e.g., IMO combinatorics

4 Complex mathematical reasoning and planning in ~ Downstream applications such as travel plan-

real-world applications ning and calendar scheduling

Theorem proving requires both the problem and the solution to be fully formalized, which can
be overly rigid for many real-world applications. Even highly structured domains, such as IMO,
have problems that are difficult to formalize (e.g., geometry and combinatorics problems), let alone
everyday applications. How can we enable complex, rigorous reasoning without formalizing every
aspect of a problem? A promising direction is to use Al to reason seamlessly between formal systems
and natural language. Such Al should be able to conduct logical reasoning, perform numerical
calculations, and generate solutions in a way that is both rigorous and human-understandable. While
the resulting reasoning chain may not constitute a formal proof, it could still include parts that can be
verified semi-automatically, potentially under human oversight. We refer to this capability as verified
reasoning in natural language and propose a framework for understanding its varying levels (Table [2).

Level 0 involves generating step-by-step reasoning in natural language without verification.
The prevalent approach is to combine LLMs with chain-of-thought [[12], but it frequently generates
reasoning steps that are brittle, incorrect, or unfaithful 61} 251} 252f]. To address these limitations,

“Many definitions that are mathematically equivalent turn out to be very different in how easily formalizable
they are in formal systems (e.g., formalizing real numbers as Cauchy sequences turns out to be easier in type
theory than as Dedekind cuts, even though mathematically the theory of reals can be developed either way).

21

Level 1 capability introduces verification alongside generation, requiring Al to assess the
correctness of reasoning steps. This verification can be done by the same model that generates
the reasoning [253] or by a different model [136]. The result of verification can be used to improve
reasoning. For example, we can generate many reasoning chains and use the verifier to select the best
one [[15]]; the model can iteratively correct its own reasoning [254]]; or it can search for solutions step
by step, maximizing a correctness score produced by the verifier [137,[203]].

Many existing benchmarks can be useful for evaluating Level 0 and Level 1, e.g., math word problems
in GSMSK [15] and AQuA [248], as well as commonsense reasoning and question answering bench-
marks like CommonSenseQA [255]] and HotpotQA [256]]. Level 1 particularly requires benchmarks
that are challenging for autoregressive generation. For instance, the MATH dataset [[16] includes
competition-level math problems that require complex reasoning and planning, where the verification
capability in Level 1 becomes essential [136]. In addition to evaluating Level 1 indirectly through the
final answer accuracy, it is valuable to directly measure whether the model can identify reasoning
errors; Fallacies [249] and ProcessBench [65] are initial steps in that direction.

One limitation with standard benchmarks like MATH is data contamination [257], which may have
partially contributed to LLMs’ impressive, near-saturating performance. While data contamination
is widely recognized, it is difficult to measure or fully eliminate its impact on evaluation outcomes.
To mitigate data contamination, it is useful to dynamically generate benchmarks in a controllable
manner. For example, the GSM-Symbolic [187]] benchmark is generated by substituting various
numbers into GSM8K-style templates. It effectively reveals reasoning flaws in current LLMs, calling
into question whether they have achieved Level 0 and Level 1 robustly. Another potential solution to
data contamination, adopted by FrontierMath [57]] and the AIMO Progress Prize [6], is to keep the
benchmark private and allows the model to access it during evaluation via a secure mechanism.

Moving to higher capability levels, we aim to make reasoning more rigorous and trustworthy.
Relying solely on neural networks for verification becomes insufficient due to their brittleness
and lack of interpretability. To address this limitation, the model can generate reasoning that
can be partially verified by external tools. These tools, built on well-established algorithms and
thoroughly tested implementations, offer greater interpretability and trustworthiness than neural
networks alone. In Level 2, models can leverage external tools to perform computation that
neural networks struggle to learn reliably, such as numerical calculations with NumPy [258]] and
symbol manipulation with SymPy [56]. Many recent math LLMs adopt this approach (called tool-
integrated reasoning in Sec. [2.I). Their performance can be evaluated on math problems requiring
intricate computations, such as those in the MATH dataset or AIME.

Tools like NumPy and SymPy are effective for computation but not suited for reasoning. In Level
3, models should be able to use external tools to perform rigorous logical reasoning. For
instance, when generating reasoning chains, the model could interleave natural language with
formal reasoning steps in Lean. Unlike theorem proving, where theorem statements are predefined,
here the model dynamically generates the “statements” during inference. Furthermore, instead of
formalizing the entire problem, the model can selectively determine which parts of reasoning to
process using formal systems versus natural language, seamlessly integrating them to construct the
solution. To our knowledge, no existing systems has achieved this kind of integration. Current
approaches [83 [119, [138] [259] attempt to autoformalize the entire problem and apply theorem
proving techniques, which is challenging for problems that cannot be fully formalized.

With recent advances in tool-using LLM agents [[14], the seamless integration of formal and informal
reasoning may soon be within reach. However, new benchmarks are required to evaluate this
capability. Unlike current benchmarks like MATH, these new benchmarks should evaluate not only
the final answer but also the quality of reasoning that led to it. Additionally, they should include math
problems that resist complete formalization. A promising candidate for such a benchmark could be
IMO in the same format as human contestantsﬁ aligning with the evaluation protocol in the AIMO
Prize [6]. During evaluation, human graders can bypass the formal reasoning steps and focus on
checking the natural language reasoning and their interface with formal steps. Beyond correctness,
we could also use verification effort as an additional metric: an ideal solution would be both correct
and easily verifiable with minimal human effort.

SInstead of the original IMO problems, AlphaGeometry [5] and AlphaProof [[7] used problems manually
formalized by human experts, which did not include combinatorics problems.

22

Real-world applications that involve complex reasoning are often not purely mathematical problems,
yet they contain significant mathematical components along with other components such as common-
sense and human preferences. Level 4 requires Al to recognize the mathematics in everyday tasks
and apply rigorous reasoning. For example, in scenarios like travel planning [[192] or calendar
scheduling [260], AI can potentially formulate these tasks as constraint satisfaction problems and
solve them using appropriate solvers such as mixed-integer linear programming (MILP) solvers.
Achieving this capability would open up a wide range of new Al applications.

5.3 Autoformalization

Table 3: Autoformalization: capability levels and benchmarks for evaluation.

Level Capability Evaluation and benchmarks

0 Representing knowledge in formal systems to Achieved by modern proof assistants
support manual formalization

1 Generating autoformalization candidates and Infrastructure to collect and store human feedback
collecting human feedback

2 Robust and faithful translations between infor- ProofNet [114], Herald [261]]; automatic evalua-
mal and formal tion of formal statements by equivalence checking

3 Inferring missing information and flagging sit- New benchmarks constructed from real-world for-
uations when a gap cannot be filled malization projects

4 Self-correcting erroneous or inconsistent in-
puts by understanding human intentions

5 Proposing novel definitions that can reduce
proof complexity

Autoformalization involves automatic translation between informal and formal representation of
mathematical knowledge. In Table (3, the most basic capability level (Level 0) is to store (i.e.,
encode and check) formal knowledge so that manual formalization is viable with enough
human effort. With the maturity of modern proof assistants, almost all mathematical proofs can be
formally encoded and checked, thanks to the expressiveness of the underlying logic of those systems.
Admittedly, some proofs involving diagrams or higher-dimensional structures could be challenging
to formalize in existing systems, and may even require further study in alternative foundations, e.g.,
homotopy type theory [262]. We argue that most proofs with an axiomatic foundation can be tweaked
into existing formal frameworks (the results may not look as natural as the informal proofs). With a
formal encoding being viable, it is a matter of human efforts to transform the knowledge in different
representations; therefore we consider this level to be mostly achieved.

At Level 1, models should generate reasonable candidates for auto-(in)formalization, supported
by an infrastructure to continuously gather and store human feedback, enabling a virtuous
feedback loop to improve model performance over time. Being exposed to both informal and
formal knowledge, existing LLMs have already learned to align concepts and generate reasonable
syntactical translation given formal/informal counterparts. However, what is mainly lacking at this
level is a system to gather and store the feedback: humans might have interacted with the model to
get the revised candidates and use them in a formal or informal setting (e.g., writing a paper), but
neither the interaction process nor the end results (i.e., aligned informal-formal pairs) have been
properly recorded. The Isabelle Parallel Corpus [[263] has been an early attempt to build a non-static
parallel corpus. The Formal Abstracts project [264], initiated by Tom Hales, aimed to link standard
mathematical publications with a Lean-based formulation that includes the main theorems but omits
their proofs. By focusing solely on the statements, this project offered a potential framework for
aligning contemporary mathematical statements with formalized counterparts. Unfortunately, the
Formal Abstracts project did not gain traction for various reasons. As a less ambitious but more
practical framework, Lean Blueprint [229] focuses on individual formalization projects, allowing users
to create human-readable “blueprints” that can later be linked to Lean formalizations. This approach
has been successfully applied in high-profile projects such as the Liquid Tensor Experiment [41]]
and the formalization of the Polynomial Freiman-Ruzsa conjecture{’| However, Lean Blueprint is

Shttps://teorth.github.io/pfr

23

https://teorth.github.io/pfr

used primarily as a one-off project planning tool, and informal proofs are not synchronized with their
formal counterparts after the final formal proofs are integrated into Lean’s Mathlib. In short, current
autoformalization pipelines are not yet mature enough for daily use. Even when autoformalization
techniques are applied in a project (e.g., in Lean Blueprint), the results are recorded statically and
in various formats (e.g., briefly mentioned in the comment sections of formal proofs), making them
difficult to collect and prone to desynchronization as the formal statements evolve. A milestone we
envision for this level is a centralized system that enables automatic translation between informal
statements and, ideally, multiple formal representations. This system would allow users to submit
revised results, and it would keep informal-formal pairs synchronized as the formal statements
continue to develop.

Using the aligned corpus collected in Level 1, Al models at Level 2 should be capable of performing
robust and faithful translations between informal and formal statements, approaching human-
level accuracy. The main obstacle anticipated at this level is the automatic evaluation of translated
(formal) statements. Early experiments have shown a misalignment between automatic metrics, such
as parsing rate and BLEU scores, and human evaluations. Fortunately, recent work incorporating
symbolic equivalence [82, [181}1265] may help establish a standard automatic metric that aligns better
with human preferences for evaluating translated formal statements. Model performance at this level
could be assessed using human-curated benchmarks, including challenges from the ICML 2024
Math-AI workshop [266, [267]], ProofNet [114], Herald [261]], and Con-NF [263].

Levels 3, 4, and 5 go beyond pattern matching and focus more on reasoning. Level 3 models should
be capable of inferring missing information when autoformalizing statements and proofs, and
can flag situations where an information gap cannot be filled. When formalizing mathematics, we
frequently deal with underspecified problems with missing or implicit assumptions in mathematical
statements and hand-waived steps in proofs. Bridging these information gaps requires robust theorem
proving and reasoning capabilities in the Al models: Proof gaps may be addressed through neural or
symbolic theorem proving (Sec. [5.1), while missing assumptions can be resolved using abductive
reasoning or counterexamples [268|269]]. The main challenge at this level is for the models to identify
information gaps—such as assessing the likelihood that a statement is provable or can be adjusted—
even when the reasoning model cannot bridge the gap immediately. This challenge is closely related
to conjecturing (see Sec. and has been examined briefly in some early explorations [270]. At
Level 4, AT models should be able to self-correct when they encounter erroneous or inconsistent
inputs. At this stage, the autoformalization model focuses more on capturing human intentions and
may rely on its own self-consistency to eliminate errors. Advancements here will be closely linked
to natural language reasoning (Sec.[5.2). Finally, at Level 5, AT models should be able to invent
novel mathematical definitions that can potentially reduce proof complexity. At this level, an Al
model is closer to a “theory builder” that can reshape the proving process through better abstraction
or concept formulation. For instance, filters (i.e., a set of sets satisfying certain properties) are rarely
taught in standard math curriculum. However, as a convenient abstraction in mathematical analysis,
they have become a widely adopted concept for formalizing limits in various proof systems, including
Isabelle [271], Lean [42], HOL Light [272], and Coq [273]]. Automatically devising definitions like
filters is what we hope an Al model can achieve at this stage.

5.4 Conjecturing

Table 4: Conjecturing: capability levels and benchmarks for evaluation.

Level Capability Evaluation and benchmarks
0 Generating conjectures useful for proving a target theorem Existing theorem proving benchmarks
1 Generating conjectures useful for proving theorems in a

particular domain

2 Understanding interestingness computationally and gener- New benchmarks and evaluation
ating interesting conjectures in new mathematical domains methodology for unknown territories

While proving theorems is a significant part of doing mathematics, a task that necessarily comes
before proving a statement is coming up with the statement to prove in the first place. At that
stage (before a proof), such a statement is a conjecture, and we hope that Al agents might be able
to formulate conjectures by themselves. Conjectures must not only be novel in a formal sense

24

(e.g., different from all those made before), since it is possible to systematically generate new but
uninteresting or unimportant conjectures. Interesting conjectures, such as Fermat’s last theorem or
the Kepler conjecture [274], can often drive the work of mathematicians for centuries, as the pursuit
of a proof or disproof unravels. But one fundamental challenge here is exactly in understanding
what interesting means in this context, and finding ways to evaluate it. Tackling this challenge
would answer questions such as: How do we computationally define interestingness? What is the
relationship between interestingness and usefulness? How does interestingness change over time,
e.g., as special cases are proved or analogous results in other domains are disproved?

In Table[d}, Level 0 would be to formulate conjectures in the context of a problem, or a particular
target result. These conjectures might be lemmas that, if proved, would help in proving a larger
theorem of interest. This is related to how LEGO-Prover [127] proposes lemmas for itself to attempt
as helpers in the context of the current theorem. These simpler, targeted conjectures can be evaluated
in the extent that they facilitate proving the theorems they were meant to support.

More generally, at Level 1, we might expect a conjecturing agent to be able to formulate
conjectures in a given domain, without necessarily aiming at a particular theorem [275]. While
difficult to evaluate directly, these conjectures might still be evaluated in (a) how often the system can
prove those conjectures and (b) whether the proofs of those conjectures, when found, serve as useful
training data for proving other theorems in that domain. Minimo [172] is a system that implements
this conjecturing-proving loop, showing that such conjectures can be generated only from the axioms
of a given arbitrary domain, their difficulty can be targeted by a language model attempting to
generate increasingly harder but provable conjectures, and that training on them improves the agent at
unseen theorems. This paradigm has the potential to allow us to train systems for domains that have
little or no human data available, which will necessarily be the case in new mathematical domains.
However, this so far has only been shown to be practical in relatively small domains (on the order of
a few dozens of axioms). It is still an open challenge to do this at the level of large libraries, such as
Lean’s mathlib, and to maintain steady progress after many iterations of conjecturing (Minimo was
tested with up to 5, and starts to saturate).

Going even beyond that frontier, future Al systems might be able to formulate conjectures that go
beyond current domains of mathematics. Some expect that a major milestone for future Al systems
will be to both conjecture and prove a high-level, interesting mathematical result. While that goes far
beyond current systems, such an achievement would mark an era where Als work side-by-side with
human mathematicians in expanding our collective knowledge of mathematics.

5.5 Formal Verification and Verified Generation

Table 5: Formal verification and verified generation: capability levels and benchmarks for evaluation.

Level Capability Evaluation and benchmarks

0 Code generation without verification HumanEval [164], MBPP [276], VerilogEval [277]]

1 Verifying simple properties of small programs ~ miniCodeProps [278]]; HumanEval/MBPP-
and designs Verus [236]; new benchmarks for generating

formal specifications and verifiable code

2 Verifying and synthesizing entire projects with ~ Selene [279]
complex functional and security properties

3 Proof and system maintenance Benchmarks constructed from the change history
(GitHub metadata) of verified systems

4 Helping users generate, explain, and debug
formal specifications

As mentioned previously, the challenges in applying Al to formal verification and verified system
generation are subtly different from those in the research mathematics setting. It is natural to define a
ladder of capabilities for this context based on the sophistication of the generation and verification
tasks (Table[5). In capability Level 1, AI can handle small-scale verification tasks, which involve
verifying small blocks of code, or small designs, against relatively simple properties, and syn-
thesize small pieces of verified code. This stage is critical as it sets the foundation for understanding

25

how AI can be scaled up to real-world system verification efforts. Several existing benchmarks
have targeted verification at this capability level [[160, 236, 278]. For instance, miniCodeProps [278]
considers code properties that are viewed as a “minimum level of competency" for automated neural
theorem provers. However, GPT-40 can only prove around 35% of the properties. Therefore, there is
significant room for improvement in AI’s ability to handle even these fundamental tasks. To the best
of our knowledge, there is no existing high-quality benchmark for generating verifiable code together
with the formal specification even at Level 0.

As we move to larger-scale systems, the complexity of both the code and the specifications increases
significantly. In Level 2, Al should provide assistance in verifying and synthesizing entire
projects and addressing complex properties. Examples of such properties include preventing mem-
ory safety issues [280], enforcing access control [46], and proving the equivalence of programs [281]].
These efforts can improve the automation of various security-related tasks, such as C-to-Rust transla-
tion [282] and reverse engineering [283]]. Achieving this level of verification involves decomposing
large systems into smaller, verifiable components, a task that is currently performed by humans [[148]].
Advanced Al techniques are required to tackle this challenge, such as agentic approaches [36} [192]]
that involve planning and problem-solving to navigate the intricate dependencies and interactions
within large codebases and designs. Benchmarks for this level should incorporate project-level
context, similar to repository-level code generation [284]. This can be achieved by repurposing
existing verified systems [47,148] to create tasks for Al. A recent benchmark called Selene explores
this direction using the extensive codebases of sel.4 [279].

System designs and implementations constantly evolve, and so must their proofs to ensure that the
desired properties remain verified. At Level 3, Al systems are expected to go beyond generation
to proof and system maintenance. When developers update the system or proof engineers decide
to refactor proofs [2835]], Al at this capability level should provide assistance, reducing the manual
efforts needed for verification even further. To effectively evaluate Al tools at this capability level,
benchmarks can be constructed by leveraging the change history of verified systems [286]]. These
benchmarks should capture a variety of scenarios, including minor bug fixes, major feature additions,
and comprehensive refactoring efforts. The AI must demonstrate proficiency not only in generating
proofs at a repository-level context [287] but also in reasoning about code and proof changes [40]].

With Levels 1-3, Al systems possess the capabilities to generate and manage proofs, assuming
the specifications expressing the properties that the generated artifacts must satisfy are provided.
However, writing specifications is a significant challenge for formal verification, as it requires
abstracting and converting user requirements into formal specification languages. In capability Level
4, Al systems make another leap by aiding users in deriving formal specifications, including
specification generation, explanation, and debugging. To benchmark specification assistance,
we can again leverage verified codebases and designs, but instead of generating proofs and code
given the specifications, we treat the code and proofs as ground truth and use them to evaluate
specifications produced by the model. Al systems need strong natural language understanding to
interpret user requirements and translate them into formal specifications. They should also have
interactive capabilities to engage with users, offering suggestions and clarifications. Moreover, they
should be able to validate specifications against known best practices and standards, ensuring they
are robust and comprehensive.

6 Conclusion and Discussion

In this position paper, we advocated for formal mathematical reasoning as a new frontier in Al. By
grounding reasoning in formal systems like Lean, this approach enables the training and evaluation
of Al models whose reasoning can be rigorously verified, which holds the potential to significantly
advance fields such as mathematics and software verification, as well as applications that require
complex and rigorous reasoning. The advent of large language models has created opportunities
for formal mathematical reasoning in Al, marking an inflection point for the field. For key tasks
such as theorem proving and autoformalization, we discussed recent advancements, future directions,
and milestones for measuring progress. Al for formal mathematical reasoning is a nascent area that
integrates insights from formal mathematics, programming languages, and machine learning. We
hope this position paper can present coherent perspectives that unite previously fragmented efforts
across these fields, fostering discussion, community building, and a clear roadmap for the future.

26

The narrative in this paper is rooted in the approach of Al and machine learning researchers, empha-
sizing general-purpose learning algorithms applied to well-defined tasks that can be automatically
evaluated using benchmarks. While this paradigm has dominated Al research in recent decades,
it has limitations. Mathematicians have explored many ways of using Al in their work, including
brainstorming ideas and inspirations, writing assistance, and organizing or searching mathematical
literature. Many of these use cases, however, resist straightforward evaluation through benchmarks or
automated metrics. Even in areas like theorem proving—where automated evaluation is feasible—
performance on benchmarks may not fully capture what human users find meaningful or helpful
(Sec.[&.3). For example, benchmarks such as LeanDojo [35] and PutnamBench [209] often fail to
measure how the prover performs on new and evolving formalization projects, such as formalizing the
proof of Fermat’s Last Theorem [288]]. This gap underscores the need for human-centered evaluation
approaches that draw on insights from human-computer interaction and cognitive science [289, 290].

Acknowledgements
We gratefully acknowledge Jeremy Avigad, Albert Q. Jiang, Zhaoyu Li, Peter O’Hearn, Daniel

Selsam, Armando Solar-Lezama, and Terence Tao for providing valuable feedback on an initial
version of this paper.

27

References

(1]

(2]
(3]
(4]

(5]

(6]
(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

(16]

(7]

(18]

[19]

Allen Newell and Herbert Simon. The logic theory machine—a complex information processing system.
IRE Transactions on information theory, 1956. 1]

Alfred North Whitehead and Bertrand Russell. Principia Mathematica. 1927.[I]
OpenAl. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023. [[| @]

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. LLaMa: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023. 1]

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without

human demonstrations. Nature, 2024. [1} 2} [[2} [[3} [[7} 22]
XTX Markets. AIMO Prize. https://aimoprize.com/, 2024.

AlphaProof and AlphaGeometry teams. Al achieves silver-medal standard solving in-
ternational mathematical olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024. III, IZL El, @ IE, IE], @

Longhui Yu, Weisen Jiang, Han Shi, YU Jincheng, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap your own mathematical questions for large
language models. In International Conference on Learning Representations (ICLR), 2024. [T} B [12]

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
MAmmoTH: Building math generalist models through hybrid instruction tuning. In International
Conference on Learning Representations (ICLR), 2024. 3]

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. In International Conference on Learning Representations (ICLR), 2024. EL @

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. DeepSeekMath: Pushing the limits of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024. [T] B]

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Neural
Information Processing Systems (NeurIPS), 2022. [1| f] [T4] 2]

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In
International Conference on Learning Representations (ICLR), 2023. 1]

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving. In International
Conference on Learning Representations (ICLR), 2024. [11 B Bl 22]

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021. [2 Bl [T} 21} 22|

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Neural
Information Processing Systems (NeurlPS), Datasets and Benchmarks Track, 2021. m @@ @ @

OpenAl Learning to reason with LLMs. https://openai.com/index/
learning-to-reason-with-11lms/} 2024. IZL EL @

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. In Neural Information Processing Systems (NeurIPS), 2022. 2} [12] [[4]

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets LLM finetuning: The
effect of data, model and finetuning method. In International Conference on Learning Representations

(ICLR), 2024. P}[12} [4]

28

https://aimoprize.com/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

[20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for higher-
order logic. 2002. IZ’ @ @

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe Filliatre, Eduardo
Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The Coq proof assistant
reference manual: Version 6.1. PhD thesis, Inria, 1997. 2| 5} 20]

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In International
Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR), 2010. [2]

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. In Neural Information Processing Systems (NeurIPS), 2024. 2]

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The Lean
theorem prover (system description). In International Conference on Automated Deduction (CADE),

2015. B Bl [6 20

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In
International Conference on Automated Deduction (CADE), 2021. 2] 5} [6} 20]

Josef Urban, Jifi Vyskoéil, and Petr Stépanek. MaLeCoP machine learning connection prover. In
International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, 2011. 2]

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Ol$dk. Reinforcement learning of
theorem proving. In Neural Information Processing Systems (NeurlPS), 2018.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. TacticToe:
learning to prove with tactics. Journal of Automated Reasoning, 2021.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén, Frangois Chollet, and Josef Urban.
DeepMath - deep sequence models for premise selection. In Neural Information Processing Systems
(NeurlPS), 2016. m

Cezary Kaliszyk, Francois Chollet, and Christian Szegedy. HolStep: A machine learning dataset for
higher-order logic theorem proving. In International Conference on Learning Representations (ICLR),
2017.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep Network Guided Proof
Search. In International Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), 2017.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A learning environment for
theorem proving. In International Conference on Learning Representations (ICLR), 2019. [13]

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In Interna-
tional Conference on Machine Learning (ICML), 2019. 2}[T9] [20]

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020. 21 P} [T4]

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan
Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented language

models. In Neural Information Processing Systems (NeurIPS), 2023. 2] P} [I0] [[3} [T4} [13] [T7] [T3} 2Ol 27]

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An in-context
learning agent for formal theorem-proving. In Conference on Language Modeling (COLM), 2024. 2} P}

[0} [T} (131 17} 6]

Yuhuai Wu, Albert Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian Szegedy.
Autoformalization with large language models. In Neural Information Processing Systems (NeurIPS),

2022. 21 P13} 14 [19]

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multi-language diversity benefits autoformalization, 2024.

2o

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. DeepSeek-Prover: Advancing theorem proving in LLMs through large-scale synthetic
data. arXiv preprint arXiv:2405.14333, 2024. 2} [7] P} [13] [13]

29

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and repair
with large language models. In ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2023. 2} [71 0| 11} [13] 26|

Mathlib Community. Completion of the liquid tensor experiment. https://leanprover-community,
github.io/blog/posts/lte-final/} 2022. 2} 23

The mathlib community. The Lean mathematical library. In Certified Programs and Proofs (CPP), 2020.

2624

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in Lean. arXiv preprint arXiv: Arxiv-2404.12534, 2024.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie Si. A
survey on deep learning for theorem proving. In Conference on Language Modeling (COLM), 2024. 3]

Andrew W Appel. Verified software toolchain: (invited talk). In European Symposium on Programming,
2011. 3

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. selL4: Formal verification of an OS kernel. In Symposium on Operating systems principles

(SOSP), 2009. 26

Xavier Leroy, Sandrine Blazy, Daniel Kistner, Bernhard Schommer, Markus Pister, and Christian
Ferdinand. CompCert-a formally verified optimizing compiler. In Embedded Real Time Software and

Systems (ERTS), 2016.

Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian
Zill. TIronclad Apps: End-to-end security via automated full-system verification. In Symposium on
Operating Systems Design and Implementation (OSDI), 2014. [3]

Yann Fleureau, Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa
Huang, and Kashif Rasul. How NuminaMath won the 1st AIMO Progress Prize. https://huggingface,
co/blog/winning-aimo-progress-prize, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
problems with language models. In Neural Information Processing Systems (NeurIPS), 2022. 3] [14]

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei
Hong, Kuikun Liu, Ziyi Wang, et al. InternLM-Math: Open math large language models toward verifiable
reasoning. arXiv preprint arXiv:2402.06332, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open dataset
of high-quality mathematical web text. In International Conference on Learning Representations (ICLR),
2024.

Shuo Yin, Weihao You, Zhilong Ji, Guogiang Zhong, and Jinfeng Bai. MuMath-Code: Combining
tool-use large language models with multi-perspective data augmentation for mathematical reasoning.
arXiv preprint arXiv:2405.07551, 2024. 3 [

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code Llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023. 3]

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume Lample,
and Stanislas Polu. NuminaMath: The largest public dataset in Al4Maths with 860k pairs of competition
math problems and solutions. https://github.com/project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf, 2024. E]

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondiej Certik, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. SymPy: symbolic computing
in Python. PeerJ Computer Science, 2017.] 22]

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falkman
Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. FrontierMath: A benchmark
for evaluating advanced mathematical reasoning in AL arXiv preprint arXiv:2411.04872,2024. 4 22]

30

https://leanprover-community.github.io/blog/posts/lte-final/
https://leanprover-community.github.io/blog/posts/lte-final/
https://huggingface.co/blog/winning-aimo-progress-prize
https://huggingface.co/blog/winning-aimo-progress-prize
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

[58] Erica Klarreich. Titans of mathematics clash over epic proof of ABC conjecture. https://www,
quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/,

2018.

[59] Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak, and Victor Carbune. LLMs cannot find reasoning
errors, but can correct them! In Findings of the Association for Computational Linguistics: ACL, 2024. [3]

[60] Ning Miao, Yee Whye Teh, and Tom Rainforth. SelfCheck: Using LLMs to zero-shot check their own
step-by-step reasoning. In International Conference on Learning Representations (ICLR), 2024.

[61] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao Su. Deduc-
tive verification of chain-of-thought reasoning. In Neural Information Processing Systems (NeurlPS),

2024. B[2]

[62] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and
Denny Zhou. Large language models cannot self-correct reasoning yet. In International Conference on
Learning Representations (ICLR), 2024. [3]

[63] Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations of
large language models on reasoning and planning tasks. arXiv preprint arXiv:2402.08115, 2024.

[64] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. CRITIC:
Large language models can self-correct with tool-interactive critiquing. In International Conference on
Learning Representations (ICLR), 2024.

[65] Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. ProcessBench: Identifying process errors in mathematical reasoning. arXiv
preprint arXiv:2412.06559, 2024. 21] 22]

[66] Alex Gu, Wen-Ding Li, Naman Jain, Theo X Olausson, Celine Lee, Koushik Sen, and Armando Solar-
Lezama. The counterfeit conundrum: Can code language models grasp the nuances of their incorrect
generations? In Findings of the Association for Computational Linguistics: ACL, 2024.]

[67] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, 1989. [3]

[68] Norman Megill and David A Wheeler. Metamath: a computer language for mathematical proofs. 2019.

Blo
[69] Mike Gordon. From LCF to HOL.: a short history. 2000. E]

[70] John Harrison. Metatheory and reflection in theorem proving: A survey and critique. Technical report,
1995.

[71] Lawrence C Paulson. A formulation of the simple theory of types (for Isabelle). In International
Conference on Computer Logic, 1988. 3]

[72] Per Martin-L6f and Giovanni Sambin. Intuitionistic type theory. Bibliopolis Naples, 1984. 3]

[73] T. Coquand and Gérard Huet. The calculus of constructions. Technical Report RR-0530, Inria, May 1986.
URL https://inria.hal.science/inria-00076024,

[74] Mario Carneiro. Lean4Lean: Towards a formalized metatheory for the Lean theorem prover. arXiv
preprint arXiv:2403.14064, 2024. 3]

[75] William A Howard. The formulae-as-types notion of construction. To HB Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, 1980. E]

[76] Abraham Adolf Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. Foundations of set theory. 1973. 3]

[77] Feng-Hsiung Hsu. Behind Deep Blue: Building the computer that defeated the world chess champion.
Princeton University Press, 2002. [3]

[78] David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game
of Go with deep neural networks and tree search. Nature, 2016. 5] [9]

[79] David Thrane Christiansen. Functional programming in Lean, 2023. [3]

[80] W.T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of Marton. arXiv preprint
arXiv:2311.05762, 2023. 6]

31

https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://inria.hal.science/inria-00076024

[81]

[82]

[83]

[84]

(85]
[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]
(98]
[99]

[100]
[101]

[102]

[103]

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li, Mateja
Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal theorem provers
with informal proofs. In International Conference on Learning Representations (ICLR), 2023. [7 0] [0} [T€]

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autoformalizing
Euclidean geometry. In International Conference on Machine Learning (ICML), 2024. [7, P} [13] 7] 24

Jin Peng Zhou, Charles E Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t trust: Verify—grounding LLM quantitative reasoning with autoformalization. In International
Conference on Learning Representations (ICLR), 2024. |Z|, EI, @

Francois Charton. Learning the greatest common divisor: explaining Transformer predictions. In
International Conference on Learning Representations (ICLR), 2024. [§]

Frangois Charton. Linear algebra with Transformers. arXiv preprint arXiv:2112.01898, 2021.[§]

Kristin Lauter, Cathy Yuanchen Li, Krystal Maughan, Rachel Newton, and Megha Srivastava. Machine
learning for modular multiplication. arXiv preprint arXiv:2402.19254, 2024. [§]

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin E Lauter. Salsa: Attacking lattice cryptogra-
phy with Transformers. In Neural Information Processing Systems (NeurIPS), 2022. |§|

Tianji Cai, Garrett W Merz, Frangois Charton, Niklas Nolte, Matthias Wilhelm, Kyle Cranmer, and
Lance J Dixon. Transforming the bootstrap: Using Transformers to compute scattering amplitudes in
planar A" = 4 super Yang-Mills theory. Machine Learning: Science and Technology, 2024. [§]

Alberto Alfarano, Frangois Charton, and Amaury Hayat. Global Lyapunov functions: a long-standing
open problem in mathematics, with symbolic Transformers. In Neural Information Processing Systems
(NeurlPS), 2024. @

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part I):
Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,2017.

B8

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan
Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al.
Mathematical discoveries from program search with large language models. Nature, 2024. [§]

Terence Tao and Van H Vu. Additive combinatorics. Cambridge University Press, 2006. [§]

Sergei Gukov, James Halverson, Fabian Ruehle, and Piotr Sutkowski. Learning to unknot. Machine
Learning: Science and Technology, 2021. [§]

Adam Zsolt Wagner. Constructions in combinatorics via neural networks. arXiv preprint
arXiv:2104.14516,2021. [} [[7]

Frangois Charton, Jordan S Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. PatternBoost:
Constructions in mathematics with a little help from AL arXiv preprint arXiv:2411.00566, 2024. [§]

Gergely Bérczi and Adam Zsolt Wagner. A note on small percolating sets on hypercubes via generative
Al arXiv preprint arXiv:2411.19734, 2024. @

Hao Wang. Toward mechanical mathematics. IBM Journal of Research and Development, 1960. |§|
Nicolaas Govert de Bruijn. Automath, a language for mathematics. 1983. |§|

Anonymous. The QED manifesto. In International Conference on Automated Deduction (CADE), 1994.

Mohan Ganesalingam. The language of mathematics. Springer, 2013. [§]

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of Formalized
Reasoning, 3(2):153-245, 2010. |§|

Daniel Kiihlwein, Marcos Cramer, Peter Koepke, and Bernhard Schroder. The Naproche system. In
International Conference on Intelligent Computer Mathematics (CICM), 2009. [§]

Konstantin Vershinin and Andrey Paskevich. ForTheL—the language of formal theories. International
Journal of Information Theories and Applications, 2000. @

32

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Muhammad Humayoun and Christophe Raffalli. MathNat-mathematical text in a controlled natural
language. Special issue: Natural Language Processing and its Applications, 2010. |§|

Patrick Massot. Teaching mathematics using lean and controlled natural language. In /5th Interna-
tional Conference on Interactive Theorem Proving (ITP 2024). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2024. [§]

Aarne Ranta. Grammatical framework. Journal of Functional Programming, 2004. [§]

Jan Frederik Schaefer and Michael Kohlhase. GLIF: A declarative framework for symbolic natural
language understanding. In Workshop on Formal and Cognitive Reasoning, 2020. |§|

Shashank Pathak. GFLean: An autoformalisation framework for lean via GF. arXiv preprint
arXiv:2404.01234, 2024. [§]

Cezary Kaliszyk, Josef Urban, and Jif{ Vyskocil. Learning to parse on aligned corpora (rough diamond).
In International Conference on Interactive Theorem Proving (ITP), 2015.[9]

Cezary Kaliszyk, Josef Urban, and Jiri Vyskocil. System description: statistical parsing of informal-
ized Mizar formulas. In International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2017.[9]

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First experiments with neural translation of informal
to formal mathematics. In International Conference on Intelligent Computer Mathematics (CICM), 2018.
Ol

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of neural machine
translation in autoformalization of mathematics in Mizar. In Certified Programs and Proofs (CPP), 2020.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’ Aurelio Ranzato. Unsupervised machine
translation using monolingual corpora only. In International Conference on Learning Representations
(ICLR), 2018.]

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. ProofNet: Autoformalizing and formally proving undergraduate-level mathematics. arXiv
preprint arXiv:2302.12433, 2023. P} 23] 24]

Jiangiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-driven
autoformalization in Lean 4. arXiv preprint arXiv:2406.01940, 2024. P} [T4]

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language to
SQL: Are we fully ready? arXiv preprint arXiv:2406.01265, 2024. 9]

Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to linear temporal
logic translators for robot task specification. In International Conference on Robotics and Automation
(ICRA), 2023.9]

Angelos Mavrogiannis, Christoforos Mavrogiannis, and Yiannis Aloimonos. Cook2LTL: Translating
cooking recipes to LTL formulae using large language models. In International Conference on Robotics
and Automation (ICRA), 2024. 9]

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. LINC: A neurosymbolic approach for logical reasoning by combining language models
with first-order logic provers. In Conference on Empirical Methods in Natural Language Processing

(EMNLP), 2023. 0} [T} 22

Kurt Godel. Uber formal unentscheidbare sitze der Principia Mathematica und verwandter systeme I.
Monatshefte fiir Mathematik und Physik, 1931. 9]

Daniel Whalen. Holophrasm: a neural automated theorem prover for higher-order logic. arXiv preprint
arXiv:1608.02644, 2016.]

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. 9]

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever.
Formal mathematics statement curriculum learning. In International Conference on Learning Representa-
tions (ICLR), 2023. [10]

33

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut
Lavril, Gabriel Ebner, and Xavier Martinet. HyperTree proof search for neural theorem proving. In
Neural Information Processing Systems (NeurIPS), 2022. [T0} [T4] [[3]

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean Welleck. Lean-STaR: Learning to interleave thinking
and proving. arXiv preprint arXiv:2407.10040, 2024. [T0} [T4]

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt,
Armando Solar-Lezama, and Joshua B Tenenbaum. DreamCoder: growing generalizable, interpretable
knowledge with wake—sleep bayesian program learning. Philosophical Transactions of the Royal Society
A, 2023.[10]

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. LEGO-Prover: Neural theorem proving with growing libraries. In
International Conference on Learning Representations (ICLR), 2023. [10} [T6] 23]

Gabriel Poesia and Noah D Goodman. Peano: learning formal mathematical reasoning. Philosophical
Transactions of the Royal Society A, 2023. [10] [16]

SA Schulz. Learning search control knowledge for equational deduction, volume 230. I0S Press, 2000.

10l

Daniel Kiihlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom Heskes. Overview
and evaluation of premise selection techniques for large theory mathematics. In Automated Reasoning:
6th International Joint Conference, IICAR 2012, Manchester, UK, June 26-29, 2012. Proceedings 6,
pages 378-392. Springer, 2012. [T0]

Jesse Alama, Tom Heskes, Daniel Kiihlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise selection for
mathematics by corpus analysis and kernel methods. Journal of automated reasoning, 52:191-213, 2014.
L0l

Bartosz Piotrowski and Josef Urban. Stateful premise selection by recurrent neural networks. arXiv
preprint arXiv:2004.08212, 2020. m

Daniel Kithlwein, Jasmin Christian Blanchette, Cezary Kaliszyk, and Josef Urban. MaSh: machine
learning for Sledgehammer. In International Conference on Interactive Theorem Proving (ITP), 2013. [10]

Jia Meng and Lawrence C Paulson. Lightweight relevance filtering for machine-generated resolution
problems. Journal of Applied Logic, 2009.

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzyg6zdz, Piotr
Mitos$, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models and
automated theorem provers. In Neural Information Processing Systems (NeurIPS), 2022. @

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International Conference on

Learning Representations (ICLR), 2024. [TT] [T4}[T3] 22]

Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided search.
In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022. [TT}[T3] [22]

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM: Satisfiability-aided language models using
declarative prompting. In Neural Information Processing Systems (NeurIPS), 2023. [T1] 22]

Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and Noah D Goodman. Certified deductive reasoning
with language models. Transactions on Machine Learning Research (TMLR), 2024. [T]

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 1969.]

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 2009.

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. QED at large: A survey
of engineering of formally verified software. Foundations and Trends® in Programming Languages,

2019. [T1[19]

Erik Seligman, Tom Schubert, and MV Achutha Kiran Kumar. Formal verification: an essential toolkit
for modern VLSI design. 2023. [I1]

34

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Shilpi Goel and Sandip Ray. Microprocessor assurance and the role of theorem proving. In Handbook of
Computer Architecture, pages 1-43. 2022. E

Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about commercial microprocessors.
In International Conference on Formal Methods in Computer-Aided Design (FMCAD), 1996. [T]]

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich.
Using crash Hoare logic for certifying the FSCQ file system. In Symposium on Operating Systems
Principles (SOSP), 2015. 1]

Tej Chajed, Joseph Tassarotti, Mark Theng, M Frans Kaashoek, and Nickolai Zeldovich. Verifying the
DaisyNFS concurrent and crash-safe file system with sequential reasoning. In Symposium on Operating
Systems Design and Implementation (OSDI), 2022. [T]]

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung Kim, Vilhelm Sjoberg, and
David Costanzo. CertiKOS: An extensible architecture for building certified concurrent OS kernels. In
Symposium on Operating Systems Design and Implementation (OSDI), 2016. E @

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub.
Implementing TLS with verified cryptographic security. In Symposium on Security and Privacy, 2013. [T1]

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-aided
security proofs for the working cryptographer. In Advances in Cryptology (CRYPTO), 2011. [I]

Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, Frans Kaashoek, and Nickolai Zeldovich. Grove: a
separation-logic library for verifying distributed systems. In Symposium on Operating Systems Principles
(SOSP), 2023. [1]]

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin
Hritcu, Samin Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay R Lorch, et al. Everest: Towards a verified,
drop-in replacement of HTTPS. In Summit on Advances in Programming Languages (SNAPL), 2017. @

Naiqgian Zheng, Menggqi Liu, Yuxing Xiang, Linjian Song, Dong Li, Feng Han, Nan Wang, Yong Ma,
Zhuo Liang, Dennis Cai, et al. Automated verification of an in-production DNS authoritative engine. In
Symposium on Operating Systems Principles (SOSP), 2023. E

Gerwin Klein. Proof engineering considered essential. In International Symposium on Formal Methods,
2014. []

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating correctness proofs
with neural networks. In SIGPLAN International Workshop on Machine Learning and Programming
Languages, 2020. [T1]

Alex Sanchez-Stern, Abhishek Varghese, Zhanna Kaufman, Dylan Zhang, Talia Ringer, and Yuriy
Brun. QEDCartographer: Automating formal verification using reward-free reinforcement learning. In
International Conference on Software Engineering (ICSE), 2025. [T]

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models. In
International Conference on Automated Software Engineering (ASE), 2024. [T1]

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
reason about program invariants? In International Conference on Machine Learning (ICML), 2023. [T1]

Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models in automated
program verification. In International Conference on Learning Representations (ICLR), 2024.

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng, Anish
Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. DafnyBench: A benchmark for formal
software verification. arXiv preprint arXiv:2406.08467, 2024. [26]

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2Inv: A deep learning framework
for program verification. In International Conference on Computer Aided Verification (CAV), 2020. @

Eric Mugnier, Emmanuel Anaya Gonzalez, Ranjit Jhala, Nadia Polikarpova, and Yuanyuan Zhou. Laurel:
Generating Dafny assertions using large language models. arXiv preprint arXiv:2405.16792, 2024. [T1]

Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and Caroline Trippel. nl2spec:
interactively translating unstructured natural language to temporal logics with large language models. In
International Conference on Computer Aided Verification (CAV), 2023. @

35

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021. [TT} 23]

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep at
the keyboard? assessing the security of Github Copilot’s code contributions. In Symposium on Security
and Privacy, 2022. [T]]

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand. Lost in translation: A
study of bugs introduced by large language models while translating code. In International Conference
on Software Engineering (ICSE), 2024. [T1]

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure code with
Al assistants? In Conference on Computer and Communications Security (CCS), 2023. [T]]

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards Al-assisted synthesis of
verified Dafny methods. In ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2024. @ @

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell,
Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust programs using linear ghost types. Proceedings
of the ACM on Programming Languages, 2023.[12]

Sahil Bhatia, Jie Qiu, Niranjan Hasabnis, Sanjit A Seshia, and Alvin Cheung. Verified code transpilation
with LLMs. arXiv preprint arXiv:2406.03003, 2024. [12]

Jan Jakubuv, Karel Chvalovsky, Zarathustra Goertzel, Cezary Kaliszyk, Mirek OlI$dk, Bartosz Piotrowski,
Stephan Schulz, Martin Suda, and Josef Urban. MizAR 60 for Mizar 50. In International Conference on
Interactive Theorem Proving (ITP), 2023. @

Gabriel Poesia, David Broman, Nick Haber, and Noah D Goodman. Learning formal mathematics from
intrinsic motivation. In Neural Information Processing Systems (NeurIPS), 2024. [[3] 23]

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham
Neubig. PAL: Program-aided language models. In International Conference on Machine Learning
(ICML), 2023. [13]

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. DeepSeek-Coder: When the large language
model meets programming-the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024. [13]

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024. 3]

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Ud-
din Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of code generation
models. In International Conference on Learning Representations (ICLR), 2023. @

Federico Cassano, John Gouwar, Francesca Lucchetti, Claire Schlesinger, Carolyn Jane Anderson,
Michael Greenberg, Abhinav Jangda, and Arjun Guha. Knowledge transfer from high-resource to
low-resource programming languages for code LLMSs. arXiv preprint arXiv:2308.09895, 2023. 13|

Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqgiao Lu, Zhengying Liu, Lingi Song,
and Xiaodan Liang. FVEL: Interactive formal verification environment with large language models via
theorem proving. In Neural Information Processing Systems (NeurlPS), 2024. [13|

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Annual Meeting of the Association for Computational Linguistics
(ACL), 2002. [13]

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook: A large-
scale lean problem set formalized from natural language math problems. arXiv preprint arXiv:2406.03847,
2024. 13

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Autoformalize
mathematical statements by symbolic equivalence and semantic consistency. In Neural Information
Processing Systems (NeurIPS), 2024. [13] 24]

36

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence. In
International Conference on Intelligent Computer Mathematics (CICM), 2020. [[4]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing Systems
(NeurIPS), 2017.[14]

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. In International Conference on Machine Learning (ICML), 2024. [14]

Fabio Petroni, Tim Rocktischel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. Language models as knowledge bases? In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2019. [14]

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, et al. Challenging BIG-Bench tasks and whether
chain-of-thought can solve them. In Findings of the Association for Computational Linguistics: ACL,
2023.[4

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad Fara-
jtabar. GSM-Symbolic: Understanding the limitations of mathematical reasoning in large language
models. arXiv preprint arXiv:2410.05229, 2024. [14] 22]

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked Transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. In Neural Information Processing Systems (NeurIPS),
2024. [14

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On the
paradox of learning to reason from data. In International Joint Conference on Artificial Intelligence
(IJCAI), 2023. [14]

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models: a critical investigation. In Neural Information Processing Systems
(NeurIPS), 2023. [14]

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
PlanBench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. In Neural Information Processing Systems (NeurIPS), 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
TravelPlanner: A benchmark for real-world planning with language agents. In International Conference
on Machine Learning (ICML), 2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. RWKYV: Reinventing RNNs
for the Transformer era. In Findings of the Association for Computational Linguistics: EMNLP, 2023.[14]

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In Conference
on Language Modeling (COLM), 2023.

Jiacheng Ye, Shansan Gong, Liheng Chen, Lin Zheng, Jiahui Gao, Han Shi, Chuan Wu, Xin Jiang,
Zhenguo Li, Wei Bi, and Lingpeng Kong. Diffusion of thoughts: Chain-of-thought reasoning in diffusion
language models. arXiv preprint arXiv:2402.07754, 2024.

Yilun Du, Jiayuan Mao, and Joshua B. Tenenbaum. Learning iterative reasoning through energy diffusion,
2024.

Matthew Ho, Vincent Zhu, Xiaoyin Chen, Moksh Jain, Nikolay Malkin, and Edwin Zhang. ProofFlow:
Preliminary study on generative flow network language model tuning for formal reasoning. arXiv preprint
arXiv:2410.13224, 2024.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Baker Grosse. INT: An inequality benchmark for
evaluating generalization in theorem proving. In International Conference on Learning Representations

(ICLR), 2021. [T4[T8]

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization in large
language models. In Neural Information Processing Systems (NeurlPS), 2022. [T4]

37

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 2019. [T5][T§]

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. HOList: An envi-
ronment for machine learning of higher order logic theorem proving. In International Conference on
Machine Learning (ICML), 2019. @

Allen Newel and Herbert A Simon. Computer science as empirical inquiry: symbols and search.
Communications of the ACM, 1976. @

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. ReST-MCTS*: LLM self-training
via process reward guided tree search. In Neural Information Processing Systems (NeurIPS), 2024. T3] 22]

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. Monte Carlo tree search boosts reasoning via iterative preference learning. arXiv preprint
arXiv:2405.00451, 2024. [13]

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally can
be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024. [13]

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis of
compute-optimal inference for problem-solving with language models. arXiv preprint arXiv:2408.00724,
2024.

Lasse Blaauwbroek, Mirek Olsdk, Jason Rute, Fidel Ivan Schaposnik Massolo, Jelle Piepenbrock, and
Vasily Pestun. Graph2Tac: Online representation learning of formal math concepts. In International
Conference on Machine Learning (ICML), 2024. [T3]

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for formal
olympiad-level mathematics. In International Conference on Learning Representations (ICLR), 2022. @

[T9 201

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating neural theorem-provers on the Putnam mathe-
matical competition. In Neural Information Processing Systems (NeurlPS), Datasets and Benchmarks

Track, 2024. [15}[T9] [20] 27]

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
InternL.M2.5-StepProver: Advancing automated theorem proving via expert iteration on large-scale Lean
problems. arXiv preprint arXiv:2410.15700, 2024. [13]

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Neural Information
Processing Systems (NeurIPS), 2023. [13]

Timothy Gowers. How can it be feasible to find proofs? https://drive.google.com/file/d/
1-FFa6nMVg18mlzPtoAQrFalwpx2YaGK4/view, 2022. @

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing
Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving theorems recursively. In Neural Information
Processing Systems (NeurIPS), 2024. [T6] 20]

Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. Lemma synthesis for automating induction over
algebraic data types. In International Conference on Principles and Practice of Constraint Programming
(CP), 2019. 1]

Aishwarya Sivaraman, Alex Sanchez-Stern, Bretton Chen, Sorin Lerner, and Todd Millstein. Data-driven
lemma synthesis for interactive proofs. Proceedings of the ACM on Programming Languages, 2022. [T6]

Cezary Kaliszyk and Josef Urban. Lemma mining over HOL Light. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning (LPAR), 2013. [T6]

Jin Peng Zhou, Yuhuai Wu, Qiyang Li, and Roger Baker Grosse. REFACTOR: Learning to extract
theorems from proofs. In International Conference on Learning Representations (ICLR), 2024. [T6]

Zhening Li, Gabriel Poesia, Omar Costilla-Reyes, Noah Goodman, and Armando Solar-Lezama. Lemma:

Bootstrapping high-level mathematical reasoning with learned symbolic abstractions. arXiv preprint
arXiv:2211.08671,2022. [16]

38

https://drive.google.com/file/d/1-FFa6nMVg18m1zPtoAQrFalwpx2YaGK4/view
https://drive.google.com/file/d/1-FFa6nMVg18m1zPtoAQrFalwpx2YaGK4/view

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]
[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: BM25 and beyond.
Foundations and Trends® in Information Retrieval, 2009.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2020.

Andrew Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of mathematics, 1995.

Chenrui Wei, Mengzhou Sun, and Wei Wang. Proving olympiad algebraic inequalities without human
demonstrations. In Neural Information Processing Systems (NeurIPS), 2024.

Anonymous. Proving olympiad inequalities by synergizing LLMs and symbolic reasoning. In Inter-
national Conference on Learning Representations (ICLR), 2025. URL https://openreview.net/
forum?id=FiySOecSm0. under review.

Christoph Dr6sser. Al will become mathematicians’ ’co-pilot’. Scientific Amer-
ican, June 2024. URL https://www.scientificamerican.com/article/
ai-will-become-mathematicians-co-pilot/. @]

Renaissance Philanthropy. Al for Math Fund. https://renaissancephilanthropy.org/
initiatives/ai-for-math-fund/, 2024.

Will Crichton, Maneesh Agrawala, and Pat Hanrahan. The role of working memory in program tracing.
In Conference on Human Factors in Computing Systems (CHI), 2021. [I§]

Will Crichton, Gavin Gray, and Shriram Krishnamurthi. A grounded conceptual model for ownership
types in Rust. Proceedings of the ACM on Programming Languages, 2023.

Talia Ringer. Proofs and conversations. 2024. URL https://dependenttyp.es/pdf/
conversations.pdf| [I§]

Patrick Massot. Lean blueprint. https://github.com/PatrickMassot/leanblueprint,

Vincent A Voelz, Vijay S Pande, and Gregory R Bowman. Folding@home: Achievements from over 20
years of citizen science herald the exascale era. Biophysical journal, 2023. [T§]

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding LLMs the right way: Fast, non-invasive
constrained generation. In International Conference on Machine Learning (ICML), 2024.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Improving LLM
code generation with grammar augmentation. arXiv preprint arXiv:2403.01632, 2024. [19]

Kasra Ferdowsi, Ruangiangian Huang, Michael B James, Nadia Polikarpova, and Sorin Lerner. Validating
Al-generated code with live programming. In Conference on Human Factors in Computing Systems
(CHI), 2024. 19

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable code generation.
In International Symposium on Al Verification, 2024. [19]

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong, Chris
Hawblitzel, Shuvendu Lahiri, Jacob R Lorch, Shuai Lu, et al. AutoVerus: Automated proof generation
for Rust code. arXiv preprint arXiv:2409.13082, 2024.

Pranjal Aggarwal, Bryan Parno, and Sean Welleck. AlphaVerus: Bootstrapping formally verified code
generation through self-improving translation and treefinement. arXiv preprint arXiv:2412.06176, 2024.

(T3 251 [26]

The Society of Automotive Engineers (SAE). Taxonomy and definitions for terms related to driving au-
tomation systems for on-road motor vehicles. https://www.sae.org/standards/content/j3016_
202104/} 2024.

Geoff Sutcliffe and Christian Suttner. The TPTP problem library. Journal of Automated Reasoning, 1998.

20

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang
Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. FIMO: A challenge formal dataset for automated
theorem proving. arXiv preprint arXiv:2309.04295,2023. 19| [20]

39

https://openreview.net/forum?id=FiyS0ecSm0
https://openreview.net/forum?id=FiyS0ecSm0
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://www.scientificamerican.com/article/ai-will-become-mathematicians-co-pilot/
https://renaissancephilanthropy.org/initiatives/ai-for-math-fund/
https://renaissancephilanthropy.org/initiatives/ai-for-math-fund/
https://dependenttyp.es/pdf/conversations.pdf
https://dependenttyp.es/pdf/conversations.pdf
https://github.com/PatrickMassot/leanblueprint
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/

[240]

[241]

[242]
[243]
[244]
[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world GitTub issues? In International
Conference on Learning Representations (ICLR), 2024. [I9] 21]

Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda—a functional language with dependent
types. In International Conference on Theorem Proving in Higher Order Logics (TPHOLs), 2009. [20]

Freek Wiedijk. Formalizing 100 theorems. https://www.cs.ru.nl/"freek/100/.
Morph Labs. Moogle: Semantic search over mathlib4. https://www.moogle.ai/} 2023. 20|

Joachim Breitner. Loogle!, 2024. URL https://loogle.lean-lang.org/,

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A semantic search engine for
Mathlib4. arXiv preprint arXiv:2403.13310, 2024. 20|

Thomas Dohmke. GitHub Copilot X: The Al-powered developer
experience. https://github.blog/news-insights/product-news/

github-copilot-x-the-ai-powered-developer-experience, 2023. [215]

Sascha Bohme and Tobias Nipkow. Sledgehammer: Judgement day. In International Joint Conference on
Automated Reasoning (IJCAR), 2010. [20]

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation:
Learning to solve and explain algebraic word problems. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2017. 21 22]

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look at the
self-verification abilities of large language models in logical reasoning. In Annual Conference of the
North American Chapter of the Association for Computational Linguistics (NAACL), 2024. 21] 22]

XTX Markets. AIMO Progress Prize: July 2024 results. https://aimoprize.com/updates/
2024-07-20-progress-prize-results| 2024. 2]

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schirli,
and Denny Zhou. Large language models can be easily distracted by irrelevant context. In International
Conference on Machine Learning (ICML), 2023. [21]

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez,
Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in chain-of-
thought reasoning. arXiv preprint arXiv:2307.13702, 2023.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In Findings of the Association
for Computational Linguistics: EMNLP, 2023. 22]

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023. 22

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL), 2019. 22]

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018. 22|

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, and Ge Li. Generalization or memorization: Data
contamination and trustworthy evaluation for large language models. In Findings of the Association for
Computational Linguistics: ACL, 2024.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming
with NumPy. Nature, 2020. 22]

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large lan-

guage models with symbolic solvers for faithful logical reasoning. In Findings of the Association for
Computational Linguistics: EMNLP, 2023. 22

40

https://www.cs.ru.nl/~freek/100/
https://www.moogle.ai/
https://loogle.lean-lang.org/
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://github.blog/news-insights/product-news/github-copilot-x-the-ai-powered-developer-experience
https://aimoprize.com/updates/2024-07-20-progress-prize-results
https://aimoprize.com/updates/2024-07-20-progress-prize-results

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]
[275]

[276]

[277]

[278]

[279]

[280]

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. NATURAL PLAN: Benchmarking LLMs on
natural language planning. arXiv preprint arXiv:2406.04520, 2024. 23]

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald: A
natural language annotated Lean 4 dataset. arXiv preprint arXiv:2410.10878, 2024. @ @

Peter Aczel, Benedikt Ahrens, Thorsten Altenkirch, Steve Awodey, Bruno Barras, Andrej Bauer, Yves
Bertot, Marc Bezem, Thierry Coquand, Eric Finster, et al. Homotopy Type Theory: Univalent Foundations
of Mathematics. 2013. 23]

Anthony Bordg, Yiannos Stathopoulos, and Lawrence Paulson. A parallel corpus for natural language
machine translation to Isabelle. In Work-in-progress papers presented at the Conference on Intelligent
Computer Mathematics (CICM) Informal Proceedings, 2022. 23]

Thomas Hales. Formal abstracts. https://formalabstracts.github.io/, 2017. @

Anonymous. Rethinking and improving autoformalization: towards a faithful metric and a dependency
retrieval-based approach. In International Conference on Learning Representations (ICLR), 2024. URL
https://openreview.net/forum?id=hUb2At2DsQ. under review. 24]

ICML 2024 Challenges on Automated Math Reasoning. |https://sites.google.com/view/
aidmathworkshopicml2024/challenges, 2024. @

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo Li,
Lingi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof data. In
International Conference on Learning Representations (ICLR), 2024. [24]

Alan Bundy, Mateja Jamnik, and Andrew Fugard. What is a proof? Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2005. [24]

Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In International Conference on Interactive Theorem Proving
(ITP), 2010. 24

Yoshua Bengio and Nikolay Malkin. Machine learning and information theory concepts towards an Al
mathematician. Bulletin of the American Mathematical Society, 2024. [24]

Johannes Holzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical analysis in
isabelle/hol. In Interactive Theorem Proving: 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings 4, pages 279-294. Springer, 2013. 4]

John Harrison. The HOL Light theory of euclidean space. Journal of Automated Reasoning, 50:173-190,
2013.24

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly library of real
analysis for coq. Mathematics in Computer Science, 9:41-62, 2015. 24]

Thomas C Hales. Formal proof. Notices of the AMS, 2008. @

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In International
Conference on Intelligent Computer Mathematics (CICM), 2020. 23]

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models.
arXiv preprint arXiv:2108.07732, 2021. @

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for Verilog code generation. In International Conference on Computer Aided Design
(ICCAD), 2023. 23]

Evan Lohn and Sean Welleck. miniCodeProps: a minimal benchmark for proving code properties. arXiv
preprint arXiv:2406.11915, 2024. 23] 26]

Lichen Zhang, Shuai Lu, and Nan Duan. Selene: Pioneering automated proof in software verification. In
Annual Meeting of the Association for Computational Linguistics (ACL), 2024. 25} 26]

Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for memory safety of C
programs. In NASA Formal Methods Symposium, 2011. @

41

https://formalabstracts.github.io/
https://openreview.net/forum?id=hUb2At2DsQ
https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://sites.google.com/view/ai4mathworkshopicml2024/challenges

[281]

[282]

[283]

[284]

[285]
[286]

[287]

[288]

[289]

[290]

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. Semantic program alignment for
equivalence checking. In Programming Language Design and Implementation (PLDI), 2019. @

Aidan ZH Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening. VERT:
Verified equivalent Rust transpilation with few-shot learning. arXiv preprint arXiv:2404.18852, 2024. [26]

Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S Adve, and Christopher W Fletcher.

Scalable validation of binary lifters. In Programming Language Design and Implementation (PLDI),
2020.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval and generation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023. [26]

Talia Ringer. Proof Repair. University of Washington, 2021. [26]

Tom Reichel, R Henderson, Andrew Touchet, Andrew Gardner, and Talia Ringer. Proof repair infras-
tructure for supervised models: Building a large proof repair dataset. In International Conference on
Interactive Theorem Proving (ITP), 2023. m

Jiewen Hu, Thomas Zhu, and Sean Welleck. miniCTX: Neural theorem proving with (long-) contexts.
arXiv preprint arXiv:2408.03350, 2024. 26]

Kevin Buzzard et al. Fermat’s Last Theorem. https://github. com/ImperialCollegeLondon/FLT,
2024. 271

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. Mathematical capabilities of ChatGPT. In Neural Information Processing
Systems (NeurlPS), Datasets and Benchmarks Track, 2024. |2_7|

Katherine M Collins, Albert Q Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt, Thomas
Lukasiewicz, Yuhuai Wu, Joshua B Tenenbaum, William Hart, et al. Evaluating language models for
mathematics through interactions. Proceedings of the National Academy of Sciences (PNAS), 2024. |T_7|

42

https://github.com/ImperialCollegeLondon/FLT

	Introduction
	AI for Mathematics (AI4Math) and the Formal Turn
	State-of-the-art Math LLMs and Their Limitations
	AI for Formal Mathematical Reasoning
	Other Directions in AI for Mathematics

	Recent Progress in AI for Formal Mathematical Reasoning
	Autoformalization
	Neural Theorem Proving
	Verified Reasoning in Natural Language
	Formal System Verification and Verified Generation

	Open Challenges and Future Directions
	Data
	Algorithms
	Tools for Assisting Human Mathematicians
	Formal Verification and Verified Generation

	Milestones and Success Measures
	Theorem Proving
	Verified Reasoning in Natural Language
	Autoformalization
	Conjecturing
	Formal Verification and Verified Generation

	Conclusion and Discussion

